Observation of Incubation Times in the Nucleation of Silicon Nanowires Obtained by the Vapor-Liquid-Solid Method
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Nanowires are filamentary crystals with a tailored diameter that can be obtained using a plethora of different synthesis techniques. In this review, we focus on the vapor phase, highlighting the most influential achievements along with a historical perspec ...
Crystal phase engineering is an exciting pathway to enhance the properties of conventional semiconductors. Metastable SiGe presents a direct band gap well suited for optical devices whereas wurtzite (WZ) phosphide alloys enable efficient light emission in ...
Two-dimensional (2D) materials have received tremendous research attention recently, as they possess peculiar physical properties in their monolayer and few-layer forms, which further lead to novel applications. A wide range of 2D materials covers insulato ...
This thesis reports on the study and use of low temperature processes for the deposition of indium gallium nitride (InGaN) thin films in order to alleviate some of the present drawbacks of its monolitic deposition on silicon for photovoltaic applications. ...
Nanopores are nanometer-sized holes that were initially proposed for DNA sequencing. Several years ago sequencing was made possible with biological nanopores. However, solid-state nanopores have plenty of advantages to offer compared to their biological co ...
Semiconductors materials and devices are essential building blocks for many of the technologies deeply embedded in modern life. Improving the performance of semiconductor devices requires a deeper understanding of the fundamental mechanisms controlling the ...
The growth of single-layer MoS2 with chemical vapor deposition is an established method that can produce large-area and high quality samples. In this article, we investigate the geometrical and optical properties of hundreds of individual single-layer MoS2 ...
We investigate in-situ laser reflectometry for measuring the axial growth rate in chemical vapor deposition of assemblies of well-aligned vertical germanium nanowires grown epitaxially on single crystal substrates. Finite difference frequency domain optica ...
Thermal conductivity (κ) plays an essential role in functional devices. It is advantageous to design materials where one can tune κ in a wide range according to its function: single-crystals and nanowires of anatase polymorph of titanium dioxide, broadly u ...
Two-dimensional (2D) materials such as graphene and transition metal dichalcogenide (TMDC) are considered as one of the most promising material platforms for future electronic devices, due to their ultra-thin thickness and fascinating electrical and optica ...