Functional programmingIn computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local identifiers), passed as arguments, and returned from other functions, just as any other data type can.
Approximation algorithmIn computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time.
Monad (functional programming)In functional programming, a monad is a structure that combines program fragments (functions) and wraps their return values in a type with additional computation. In addition to defining a wrapping monadic type, monads define two operators: one to wrap a value in the monad type, and another to compose together functions that output values of the monad type (these are known as monadic functions). General-purpose languages use monads to reduce boilerplate code needed for common operations (such as dealing with undefined values or fallible functions, or encapsulating bookkeeping code).
Hamiltonian path problemIn the mathematical field of graph theory the Hamiltonian path problem and the Hamiltonian cycle problem are problems of determining whether a Hamiltonian path (a path in an undirected or directed graph that visits each vertex exactly once) or a Hamiltonian cycle exists in a given graph (whether directed or undirected). Both problems are NP-complete.
Reliability (computer networking)In computer networking, a reliable protocol is a communication protocol that notifies the sender whether or not the delivery of data to intended recipients was successful. Reliability is a synonym for assurance, which is the term used by the ITU and ATM Forum. Reliable protocols typically incur more overhead than unreliable protocols, and as a result, function more slowly and with less scalability. This often is not an issue for unicast protocols, but it may become a problem for reliable multicast protocols.
Voice over IPVoice over Internet Protocol (VoIP), also called IP telephony, is a method and group of technologies for voice calls, the delivery of voice communication sessions over Internet Protocol (IP) networks, such as the Internet. The broader terms Internet telephony, broadband telephony, and broadband phone service specifically refer to the provisioning of voice and other communications services (fax, SMS, voice messaging) over the Internet, rather than via the public switched telephone network (PSTN), also known as plain old telephone service (POTS).
Operations researchOperations research (operational research) (U.S. Air Force Specialty Code: Operations Analysis), often shortened to the initialism OR, is a discipline that deals with the development and application of analytical methods to improve decision-making. The term management science is occasionally used as a synonym. Employing techniques from other mathematical sciences, such as modeling, statistics, and optimization, operations research arrives at optimal or near-optimal solutions to decision-making problems.
Light pollutionLight pollution is the presence of unwanted, inappropriate, or excessive artificial lighting. In a descriptive sense, the term light pollution refers to the effects of any poorly implemented lighting, during the day or night. Light pollution can be understood not only as a phenomenon resulting from a specific source or kind of pollution, but also as a contributor to the wider, collective impact of various sources of pollution. Although this type of pollution can exist throughout the day, its effects are magnified during the night with the contrast of darkness.
Fermat numberIn mathematics, a Fermat number, named after Pierre de Fermat, the first known to have studied them, is a positive integer of the form where n is a non-negative integer. The first few Fermat numbers are: 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ... . If 2k + 1 is prime and k > 0, then k itself must be a power of 2, so 2k + 1 is a Fermat number; such primes are called Fermat primes. , the only known Fermat primes are F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537 ; heuristics suggest that there are no more.
Graph coloringIn graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.