In this Note we derive a posteriori error estimates for a multiscale method, the so-called heterogeneous multiscale method, applied to elliptic homogenization problems. The multiscale method is based on a macro-to-micro formulation. The macroscopic method discretizes the physical problem in a macroscopic finite element space, while the microscopic method recovers the unknown macroscopic data on the fly during the macroscopic stiffness matrix assembly process. We propose a framework for the analysis allowing to take advantage of standard techniques for a posteriori error estimates at the macroscopic level and to derive residual-based indicators in the macroscopic domain for adaptive mesh refinement. To cite this article: A. Abdulle, A. Nonnenmacher, C. R. Acad. Sci Paris, Ser. 1347 (2009). (C) 2009 Published by Elsevier Masson SAS on behalf of Academie des sciences.
Annalisa Buffa, Jochen Peter Hinz, Ondine Gabrielle Chanon, Alessandra Arrigoni
Annalisa Buffa, Rafael Vazquez Hernandez, Ondine Gabrielle Chanon
Pablo Antolin Sanchez, Ondine Gabrielle Chanon