Elliptic Curve Digital Signature AlgorithmIn cryptography, the Elliptic Curve Digital Signature Algorithm (ECDSA) offers a variant of the Digital Signature Algorithm (DSA) which uses elliptic-curve cryptography. As with elliptic-curve cryptography in general, the bit size of the private key believed to be needed for ECDSA is about twice the size of the security level, in bits. For example, at a security level of 80 bits—meaning an attacker requires a maximum of about operations to find the private key—the size of an ECDSA private key would be 160 bits.
Random number generationRandom number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted better than by random chance is generated. This means that the particular outcome sequence will contain some patterns detectable in hindsight but unpredictable to foresight. True random number generators can be hardware random-number generators (HRNGs), wherein each generation is a function of the current value of a physical environment's attribute that is constantly changing in a manner that is practically impossible to model.
Electronic signatureAn electronic signature, or e-signature, is data that is logically associated with other data and which is used by the signatory to sign the associated data. This type of signature has the same legal standing as a handwritten signature as long as it adheres to the requirements of the specific regulation under which it was created (e.g., eIDAS in the European Union, NIST-DSS in the USA or ZertES in Switzerland). Electronic signatures are a legal concept distinct from digital signatures, a cryptographic mechanism often used to implement electronic signatures.
Digital signatureA digital signature is a mathematical scheme for verifying the authenticity of digital messages or documents. A valid digital signature on a message gives a recipient confidence that the message came from a sender known to the recipient. Digital signatures are a standard element of most cryptographic protocol suites, and are commonly used for software distribution, financial transactions, contract management software, and in other cases where it is important to detect forgery or tampering.
Hardware random number generatorIn computing, a hardware random number generator (HRNG), true random number generator (TRNG) or non-deterministic random bit generator (NRBG) is a device that generates random numbers from a physical process capable of producing entropy (in other words, the device always has access to a physical entropy source), rather than by means of an algorithm. Such devices are often based on microscopic phenomena that generate low-level, statistically random "noise" signals, such as thermal noise, the photoelectric effect, involving a beam splitter, and other quantum phenomena.
Pseudorandom number generatorA pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG), is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers. The PRNG-generated sequence is not truly random, because it is completely determined by an initial value, called the PRNG's seed (which may include truly random values).
Timing attackIn cryptography, a timing attack is a side-channel attack in which the attacker attempts to compromise a cryptosystem by analyzing the time taken to execute cryptographic algorithms. Every logical operation in a computer takes time to execute, and the time can differ based on the input; with precise measurements of the time for each operation, an attacker can work backwards to the input. Finding secrets through timing information may be significantly easier than using cryptanalysis of known plaintext, ciphertext pairs.
Elliptic-curve cryptographyElliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC allows smaller keys compared to non-EC cryptography (based on plain Galois fields) to provide equivalent security. Elliptic curves are applicable for key agreement, digital signatures, pseudo-random generators and other tasks. Indirectly, they can be used for encryption by combining the key agreement with a symmetric encryption scheme.
Pretty Good PrivacyPretty Good Privacy (PGP) is an encryption program that provides cryptographic privacy and authentication for data communication. PGP is used for signing, encrypting, and decrypting texts, e-mails, files, directories, and whole disk partitions and to increase the security of e-mail communications. Phil Zimmermann developed PGP in 1991. PGP and similar software follow the OpenPGP, an open standard of PGP encryption software, standard (RFC 4880) for encrypting and decrypting data.
Random seedA random seed (or seed state, or just seed) is a number (or vector) used to initialize a pseudorandom number generator. For a seed to be used in a pseudorandom number generator, it does not need to be random. Because of the nature of number generating algorithms, so long as the original seed is ignored, the rest of the values that the algorithm generates will follow probability distribution in a pseudorandom manner.