Fully polynomial-time approximation schemeA fully polynomial-time approximation scheme (FPTAS) is an algorithm for finding approximate solutions to function problems, especially optimization problems. An FPTAS takes as input an instance of the problem and a parameter ε > 0. It returns as output a value is at least times the correct value, and at most times the correct value. In the context of optimization problems, the correct value is understood to be the value of the optimal solution, and it is often implied that an FPTAS should produce a valid solution (and not just the value of the solution).
Aurifeuillean factorizationIn number theory, an aurifeuillean factorization, named after Léon-François-Antoine Aurifeuille, is factorization of certain integer values of the cyclotomic polynomials. Because cyclotomic polynomials are irreducible polynomials over the integers, such a factorization cannot come from an algebraic factorization of the polynomial. Nevertheless, certain families of integers coming from cyclotomic polynomials have factorizations given by formulas applying to the whole family, as in the examples below.
Rational functionIn mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers; they may be taken in any field K. In this case, one speaks of a rational function and a rational fraction over K. The values of the variables may be taken in any field L containing K. Then the domain of the function is the set of the values of the variables for which the denominator is not zero, and the codomain is L.
AlgorithmIn mathematics and computer science, an algorithm (ˈælɡərɪðəm) is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning), achieving automation eventually.
Euclidean algorithmIn mathematics, the Euclidean algorithm, or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers (numbers), the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements (300 BC). It is an example of an algorithm, a step-by-step procedure for performing a calculation according to well-defined rules, and is one of the oldest algorithms in common use.
Integer factorizationIn number theory, integer factorization is the decomposition, when possible, of a positive integer into a product of smaller integers. If the factors are further restricted to be prime numbers, the process is called prime factorization, and includes the test whether the given integer is prime (in this case, one has a "product" of a single factor). When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist.
Polynomial ringIn mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers.
Rational root theoremIn algebra, the rational root theorem (or rational root test, rational zero theorem, rational zero test or p/q theorem) states a constraint on rational solutions of a polynomial equation with integer coefficients and . Solutions of the equation are also called roots or zeros of the polynomial on the left side. The theorem states that each rational solution x = p⁄q, written in lowest terms so that p and q are relatively prime, satisfies: p is an integer factor of the constant term a0, and q is an integer factor of the leading coefficient an.
Rational numberIn mathematics, a rational number is a number that can be expressed as the quotient or fraction \tfrac p q of two integers, a numerator p and a non-zero denominator q. For example, \tfrac{-3}{7} is a rational number, as is every integer (e.g., 5 = 5/1). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface Q, or blackboard bold \Q. A rational number is a real number.
Variable starA variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes eclipses it.