In algebra, the rational root theorem (or rational root test, rational zero theorem, rational zero test or p/q theorem) states a constraint on rational solutions of a polynomial equation
with integer coefficients and . Solutions of the equation are also called roots or zeros of the polynomial on the left side.
The theorem states that each rational solution x = p⁄q, written in lowest terms so that p and q are relatively prime, satisfies:
p is an integer factor of the constant term a0, and
q is an integer factor of the leading coefficient an.
The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is the special case of the rational root theorem when the leading coefficient is an = 1.
The theorem is used to find all rational roots of a polynomial, if any. It gives a finite number of possible fractions which can be checked to see if they are roots. If a rational root x = r is found, a linear polynomial (x – r) can be factored out of the polynomial using polynomial long division, resulting in a polynomial of lower degree whose roots are also roots of the original polynomial.
The general cubic equation
with integer coefficients has three solutions in the complex plane. If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.
Let with
Suppose P(p/q) = 0 for some coprime p, q ∈ Z:
To clear denominators, multiply both sides by qn:
Shifting the a0 term to the right side and factoring out p on the left side produces:
Thus, p divides a0qn. But p is coprime to q and therefore to qn, so by Euclid's lemma p must divide the remaining factor a0.
On the other hand, shifting the an term to the right side and factoring out q on the left side produces:
Reasoning as before, it follows that q divides an.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduces complex numbers and their forms, including Cartesian, polar, and exponential forms, and explains how to find the argument of a complex number.
Covers a recap on mathematical notations and introduces rational numbers and basic algebraic operations.
Explores geometric transformations, invariant properties, and mean relationships in modern geometry.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
Given a quadratic equation, e.g. x^2 + 2*y^2 = 81, how can we decide whether there is a rational solution (x,y)? This basic question is what the theory of Rational Quadratic Forms is all about. The co
In algebra, a cubic equation in one variable is an equation of the form in which a is nonzero. The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients a, b, c, and d of the cubic equation are real numbers, then it has at least one real root (this is true for all odd-degree polynomial functions). All of the roots of the cubic equation can be found by the following means: algebraically: more precisely, they can be expressed by a cubic formula involving the four coefficients, the four basic arithmetic operations, square roots and cube roots.
In algebra, a monic polynomial is a non-zero univariate polynomial (that is, a polynomial in a single variable) in which the leading coefficient (the nonzero coefficient of highest degree) is equal to 1. That is to say, a monic polynomial is one that can be written as with Monic polynomials are widely used in algebra and number theory, since they produce many simplifications and they avoid divisions and denominators. Here are some examples. Every polynomial is associated to a unique monic polynomial.
In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems. The first polynomial factorization algorithm was published by Theodor von Schubert in 1793. Leopold Kronecker rediscovered Schubert's algorithm in 1882 and extended it to multivariate polynomials and coefficients in an algebraic extension.
This paper presents an accuracy-preserving p-weighted limiter for discontinuous Galerkin methods on one-dimensional and two-dimensional triangular grids. The p-weighted limiter is the extension of the second-order WENO limiter by Li et al. [W. Li, J. Pan a ...
A set R⊂N is called rational if it is well approximable by finite unions of arithmetic progressions, meaning that for every \unicode[STIX]x1D716>0 there exists a set B=⋃i=1raiN+bi, where $a_{1},\ldots ,a_ ...
It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension