Digital signatureA digital signature is a mathematical scheme for verifying the authenticity of digital messages or documents. A valid digital signature on a message gives a recipient confidence that the message came from a sender known to the recipient. Digital signatures are a standard element of most cryptographic protocol suites, and are commonly used for software distribution, financial transactions, contract management software, and in other cases where it is important to detect forgery or tampering.
Field extensionIn mathematics, particularly in algebra, a field extension is a pair of fields such that the operations of K are those of L restricted to K. In this case, L is an extension field of K and K is a subfield of L. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers. Field extensions are fundamental in algebraic number theory, and in the study of polynomial roots through Galois theory, and are widely used in algebraic geometry.
Group extensionIn mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If and are two groups, then is an extension of by if there is a short exact sequence If is an extension of by , then is a group, is a normal subgroup of and the quotient group is isomorphic to the group . Group extensions arise in the context of the extension problem, where the groups and are known and the properties of are to be determined.
Key (cryptography)A key in cryptography is a piece of information, usually a string of numbers or letters that are stored in a file, which, when processed through a cryptographic algorithm, can encode or decode cryptographic data. Based on the used method, the key can be different sizes and varieties, but in all cases, the strength of the encryption relies on the security of the key being maintained. A key's security strength is dependent on its algorithm, the size of the key, the generation of the key, and the process of key exchange.
Subgroup seriesIn mathematics, specifically group theory, a subgroup series of a group is a chain of subgroups: where is the trivial subgroup. Subgroup series can simplify the study of a group to the study of simpler subgroups and their relations, and several subgroup series can be invariantly defined and are important invariants of groups. A subgroup series is used in the subgroup method. Subgroup series are a special example of the use of filtrations in abstract algebra.
Public-key cryptographyPublic-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security.
ComputationA computation is any type of arithmetic or non-arithmetic calculation that is well-defined. Common examples of computations are mathematical equations and computer algorithms. Mechanical or electronic devices (or, historically, people) that perform computations are known as computers. The study of computation is the field of computability, itself a sub-field of computer science. The notion that mathematical statements should be ‘well-defined’ had been argued by mathematicians since at least the 1600s, but agreement on a suitable definition proved elusive.
Purely inseparable extensionIn algebra, a purely inseparable extension of fields is an extension k ⊆ K of fields of characteristic p > 0 such that every element of K is a root of an equation of the form xq = a, with q a power of p and a in k. Purely inseparable extensions are sometimes called radicial extensions, which should not be confused with the similar-sounding but more general notion of radical extensions. An algebraic extension is a purely inseparable extension if and only if for every , the minimal polynomial of over F is not a separable polynomial.
Key sizeIn cryptography, key size, key length, or key space refer to the number of bits in a key used by a cryptographic algorithm (such as a cipher). Key length defines the upper-bound on an algorithm's security (i.e. a logarithmic measure of the fastest known attack against an algorithm), because the security of all algorithms can be violated by brute-force attacks. Ideally, the lower-bound on an algorithm's security is by design equal to the key length (that is, the algorithm's design does not detract from the degree of security inherent in the key length).
Theory of computationIn theoretical computer science and mathematics, the theory of computation is the branch that deals with what problems can be solved on a model of computation, using an algorithm, how efficiently they can be solved or to what degree (e.g., approximate solutions versus precise ones). The field is divided into three major branches: automata theory and formal languages, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".