Dispersion properties of silicon nanophotonic waveguides investigated with Fourier optics
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Dynamic diffraction gratings can be microfabricated with precision and offer extremely sensitive displacement measurements and light intensity modulation. The effect of pure translation of the moving part of the grating on diffracted order intensities is w ...
Ultra-thin polymer optical waveguide couplers for integrated optics based on Bloch surface waves (BSWs) are presented. Desirable BSW guiding properties, such as low loss and long propagation distance, are observed. The waveguide thickness is on the order o ...
State-of-the-art nanophotonic devices based on semiconductor technology use total internal reflection or the photonic bandgap effect to reduce the waveguide core dimensions down to hundreds of nanometers, ensuring strong optical confinement within the scal ...
We propose and experimentally demonstrate a method based on Brillouin optical time-domain analysis to measure the longitudinal signal power distribution along phase-sensitive fiber-optical parametric amplifiers (PS-FOPAs). Experimental results show that th ...
We present a novel, accurate and fast algorithm to obtain Fourier series coecients from an IC layer whose description consists of rectilinear polygons on a plane, and how to implement it using o-the-shelf hardware components. Based on properties of Fourier ...
Photonic crystals (PhC) are periodically structured electromagnetic media, in which light within some frequency ranges cannot propagate through the structure. Such frequency ranges are commonly referred as photonic band gaps (PBG). The length scale of the ...
The rapid development of the Internet has created new opportunities for teaching in general and it is our aim to show how the current evolution can best be exploited for crystallography education in particular. Currently, we can find a very large selection ...
We report a study of the quantum dot (QD) emission in short photonic crystal waveguides. We observe that the quantum dot photoluminescence intensity and decay rate are strongly enhanced when the emission energy is in resonance with Fabry-Perot (FP) cavity ...
Dynamic control of the speed of a light signal, based on stimulated Brillouin scattering in optical fibers, was theoretically studied and also experimentally demonstrated as the core object of this thesis. To date, slow light based on stimulated Brillouin ...
Coupling into the Bloch modes of a two-dimensional photonic crystal (PhC) field is investigated by Fourier optics. The PhC was designed to operate in the second band above the air-light line, close to the autocollimation regime for TE polarization. The sam ...