Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
There is a rich collection of literature that aims at protecting the privacy of users querying location-based services. One of the most popular location privacy techniques consists in cloaking users' locations such that k users appear as potential senders of a query, thus achieving k-anonymity. This paper analyzes the effectiveness of k-anonymity approaches for protecting location privacy in the presence of various types of adversaries. The unraveling of the scheme unfolds the inconsistency between its components, mainly the cloaking mechanism and the k-anonymity metric. We show that constructing cloaking regions based on the users' locations does not reliably relate to location privacy, and argue that this technique may even be detrimental to users' location privacy. The uncovered flaws imply that existing k-anonymity scheme is a tattered cloak for protecting location privacy.
, , ,