On a class of mean fi eld solutions of the Monge problem for perfect and self-interacting systems
Related publications (115)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This is an overview of a program of stochastic deformation of the mathematical tools of classical mechanics, in the Lagrangian and Hamiltonian approaches. It can also be regarded as a stochastic version of Geometric Mechanics.The main idea is to construct ...
The flow over a 2D bump at moderate Reynolds numbers is studied as a pro- totype of detached boundary layers. It is well known that such non-normal systems can exhibit large energy amplification even in their stable regime, as characterized by transient gr ...
The most classic approach to the dynamics of an n-dimensional mechanical system constrained by d independent holonomic constraints is to pick explicitly a new set of (n - d) curvilinear coordinatesparametrizingthe manifold of configurations satisfying the ...
A class of Neumann type systems are derived separating the spatial and temporal variables for the 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada (CDGKS) equation and the modified Korteweg-de Vries (mKdV) hierarchy. The Lax-Moser matrix of Neumann type s ...
This study derives geometric, variational discretization of continuum theories arising in fluid dynamics, magnetohydrodynamics (MHD), and the dynamics of complex fluids. A central role in these discretizations is played by the geometric formulation of flui ...
This paper presents a Lagrangian approach for the simulation of two-dimensional free-surface flows along with a systematic validation. Fluid-flow is traditionally modeled using an Eulerian description in association with finite differences and, more recent ...
We point out an interesting relation between transport in Hamiltonian dynamics and Floer homology. We generalize homoclinic Floer homology from R-2 and closed surfaces to two-dimensional cylinders. The relative symplectic action of two homoclinic points is ...
In this work we aim at the description, study and numerical investigation of the fluid-structure interaction (FSI) problem applied to hemodynamics. The FSI model considered consists of the Navier-Stokes equations on moving domains modeling blood as a visco ...
A Hamiltonian/Lagrangian theory to describe guiding centre orbit drift motion which is canonical in the Boozer coordinate frame has been extended to include full electromagnetic perturbed fields in anisotropic pressure 3D equilibria with nested magnetic fl ...
A Hamiltonian/Lagrangian theory to describe guiding centre orbit drift motion which is canonical in the Boozer coordinate frame has been extended to include full electromagnetic perturbed fields in anisotropic pressure 3D equilibria with nested magnetic fl ...