Uncovering the Physics of Frustrated Quantum Magnets using the Correlation Density Matrix Approach
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The ground state and zero-temperature magnetization process of the spin-1/2 Ising-Heisenberg model on two-dimensional triangles-in-triangles lattices are exactly calculated using eigenstates of the smallest commuting spin clusters. Our ground-state analysi ...
The magnetism of a metallic two-dimensional triangular antiferromagnetic (AF) compound, Ag2CrO2, has been investigated by muon-spin rotation and relaxation (mu+SR) using a powder sample in the temperature range between 1.8 and 40 K. Below T-N = 24 K, a muo ...
Generalized versions of the entropic (Hirschman-Beckner) and support (Elad-Bruckstein) uncertainty principle are presented for frames representations. Moreover, a sharpened version of the support inequality is obtained by introducing a generalization of th ...
Low-dimensional spin systems, consisting of arrays of spins arranged in chains or ladders, have been investigated intensively in recent years using both exactly solvable theoretical models as well as a variety of experimental techniques. In case of random ...
The magnetism of a metallic two-dimensional triangular antiferromagnetic (AF) compound, Ag2CrO2, has been investigated by muon-spin rotation and relaxation (mu+SR) using a powder sample in the temperature range between 1.8 and 40 K. Below T-N = 24 K, a muo ...
A combination of density functional theory calculations, many-body model considerations, and magnetization and electron-spin-resonance measurements shows that the multiferroic FeTe2O5Br should be described as a system of alternating antiferromagnetic S = 5 ...
We present Monte Carlo simulations for a classical antiferromagnetic Heisenberg model with both nearest (J(1)) and next-nearest (J(2)) exchange couplings on the square lattice in the presence of nonmagnetic impurities. We show that the order-by-disorder en ...
Inspired by the recent discovery of a new instability towards a chiral phase of the classical Heisenberg model on the kagome lattice, we propose a specific chiral spin liquid that reconciles different, well-established results concerning both the classical ...
In order to understand the nature of the two-dimensional Bose-Einstein condensed (BEC) phase in BaCuSi2O6, we performed detailed Cu-63 and Si-29 NMR above the critical magnetic field, H-c1 = 23.4 T. The two different alternating layers present in the syste ...
We investigate the competition between spin supersolidity and phase separation in a frustrated spin-half model of weakly coupled dimers. We start by considering systems of hard-core bosons on the square lattice, onto which the low-energy physics of the her ...