Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Beliefs inform the behaviour of forward-thinking agents in complex environments. Recently, sequential Bayesian inference has emerged as a mechanism to study belief formation among agents adapting to dynamical conditions. However, we lack critical theory to ...
Microchannel plates based on amorphous silicon have the inherent capability to overcome the existing spatial and temporal resolution limitations of single photon detectors. A Monte Carlo model-based study is presented here that serves to exploit their full ...
This work presents and studies a distributed algorithm for solving optimization problems over networks where agents have individual costs to minimize subject to subspace constraints that require the minimizers across the network to lie in a low-dimensional ...
A multi-agent system consists of a collection of decision-making or learning agents subjected to streaming observations from some real-world phenomenon. The goal of the system is to solve some global learning or optimization problem in a distributed or dec ...
Spatial count data models are used to explain and predict the frequency of phenomena such as traffic accidents in geographically distinct entities such as census tracts or road segments. These models are typically estimated using Bayesian Markov chain Mont ...
This work studies the problem of inferring from streaming data whether an agent is directly influenced by another agent over an adaptive network of interacting agents. Agent i influences agent j if they are connected, and if agent j uses the information fr ...
In this paper, we introduce a new class of potential fields, i.e., meta navigation functions (MNFs) to coordinate multi-agent systems. Thanks to the MNF formulation, agents can contribute to each other's coordination via partial and/or total associations, ...
This article reviews significant advances in networked signal and information processing (SIP), which have enabled in the last 25 years extending decision making and inference, optimization, control, and learning to the increasingly ubiquitous environments ...
In multi-agent reinforcement learning, multiple agents learn simultaneously while interacting with a common environment and each other. Since the agents adapt their policies during learning, not only the behavior of a single agent becomes non-stationary, b ...
In the current work we present two generalizations of the Parallel Tempering algorithm, inspired by the so-called continuous-time Infinite Swapping algorithm. Such a method, found its origins in the molecular dynamics community, and can be understood as th ...