**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Low computation and low latency algorithms for distributed sensor network initialization

Abstract

In this paper, we show how an underlying system’s state vector distribution can be determined in a distributed heterogeneous sensor network with reduced subspace observability at the individual nodes. The presented algorithm can generate the initial state vector distribution for networks with a variety of sensor types as long as the collective set of measurements from all the sensors provides full state observability. Hence the network, as a whole, can be capable of observing the target state vector even if the individual nodes are not capable of observing it locally. Initialization is accomplished through a novel distributed implementation of the particle filter that involves serial particle proposal and weighting strategies that can be accomplished without sharing raw data between individual nodes. If multiple events of interest occur, their individual states can be initialized simultaneously without requiring explicit data association across nodes. The resulting distributions can be used to initialize a variety of distributed joint tracking algorithms. We present two variants of our initialization algorithm: a low complexity implementation and a low latency implementation. To demonstrate the effectiveness of our algorithms we provide simulation results for initializing the states of multiple maneuvering targets in smart sensor networks consisting of acoustic and radar sensors.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (32)

Related publications (45)

Related MOOCs (32)

Normal distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution (and also its median and mode), while the parameter is its standard deviation. The variance of the distribution is . A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.

Network theory

In mathematics, computer science and network science, network theory is a part of graph theory. It defines networks as graphs where the nodes or edges possess attributes. Network theory analyses these networks over the symmetric relations or asymmetric relations between their (discrete) components. Network theory has applications in many disciplines, including statistical physics, particle physics, computer science, electrical engineering, biology, archaeology, linguistics, economics, finance, operations research, climatology, ecology, public health, sociology, psychology, and neuroscience.

Quantum state

In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a quantum mechanical prediction for the system represented by the state. Knowledge of the quantum state together with the quantum mechanical rules for the system's evolution in time exhausts all that can be known about a quantum system. Quantum states may be defined in different ways for different kinds of systems or problems.

Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP

Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization

Advanced topics: this module covers real-time audio processing (with
examples on a hardware board), image processing and communication system design.

Recently, there have been multiple proposals for faster methods to calculate glare metrics, daylight glare probability (DGP) in particular. This is driven simultaneously by the lengthy times required to simulate DGP with a conventional image-based approach ...

2022Training datasets for machine learning often have some form of missingness. For example, to learn a model for deciding whom to give a loan, the available training data includes individuals who were given a loan in the past, but not those who were not. This ...

Deep neural networks have been empirically successful in a variety of tasks, however their theoretical understanding is still poor. In particular, modern deep neural networks have many more parameters than training data. Thus, in principle they should over ...