Investigation of kNN Classifier on Posterior Features Towards Application in Automatic Speech Recognition
Related publications (65)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Multimodal signal processing analyzes a physical phenomenon through several types of measures, or modalities. This leads to the extraction of higher-quality and more reliable information than that obtained from single-modality signals. The advantage is two ...
In this thesis, we investigate the use of posterior probabilities of sub-word units directly as input features for automatic speech recognition (ASR). These posteriors, estimated from data-driven methods, display some favourable properties such as increase ...
This thesis focuses on the analysis of the trajectories of a mobile agent. It presents different techniques to acquire a quantitative measure of the difference between two trajectories or two trajectory datasets. A novel approach is presented here, based o ...
We present a framework to apply Volterra series to analyze multilayered perceptrons trained to estimate the posterior probabilities of phonemes in automatic speech recognition. The identified Volterra kernels reveal the spectro-temporal patterns that are l ...
In this thesis, we investigate the use of posterior probabilities of sub-word units directly as input features for automatic speech recognition (ASR). These posteriors, estimated from data-driven methods, display some favourable properties such as increase ...
We consider the problem of binary classification where the classifier may abstain instead of classifying each observation. The Bayes decision rule for this setup, known as Chow’s rule, is defined by two thresholds on posterior probabilities. From simple des ...
We investigate the use of the log-likelihood of the features obtained from a generative Gaussian mixture model, and the posterior probability of phonemes from a discriminative multilayered perceptron in multi-stream combination for recognition of phonemes. ...
We present a framework to apply Volterra series to analyze multilayered perceptrons trained to estimate the posterior probabilities of phonemes in automatic speech recognition. The identified Volterra kernels reveal the spectro-temporal patterns that are l ...
In this thesis, we investigate the use of posterior probabilities of sub-word units directly as input features for automatic speech recognition (ASR). These posteriors, estimated from data-driven methods, display some favourable properties such as increase ...
We investigate the use of the log-likelihood of the features obtained from a generative Gaussian mixture model, and the posterior probability of phonemes from a discriminative multilayered perceptron in multi-stream combination for recognition of phonemes. ...