**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Online-Batch Strongly Convex Multi Kernel Learning

Abstract

Several object categorization algorithms use kernel methods over multiple cues, as they offer a principled ap- proach to combine multiple cues, and to obtain state-of-the- art performance. A general drawback of these strategies is the high computational cost during training, that prevents their application to large-scale problems. They also do not provide theoretical guarantees on their convergence rate. Here we present a Multiclass Multi Kernel Learning (MKL) algorithm that obtains state-of-the-art performance in a considerably lower training time. We generalize the standard MKL formulation to introduce a parameter that al- lows us to decide the level of sparsity of the solution. Thanks to this new setting, we can directly solve the problem in the primal formulation. We prove theoretically and experimen- tally that 1) our algorithm has a faster convergence rate as the number of kernels grow; 2) the training complexity is linear in the number of training examples; 3) very few iter- ations are enough to reach good solutions. Experiments on three standard benchmark databases support our claims.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (19)

Related publications (23)

Rate of convergence

In numerical analysis, the order of convergence and the rate of convergence of a convergent sequence are quantities that represent how quickly the sequence approaches its limit. A sequence that converges to is said to have order of convergence and rate of convergence if The rate of convergence is also called the asymptotic error constant. Note that this terminology is not standardized and some authors will use rate where this article uses order (e.g., ).

Series acceleration

In mathematics, series acceleration is one of a collection of sequence transformations for improving the rate of convergence of a series. Techniques for series acceleration are often applied in numerical analysis, where they are used to improve the speed of numerical integration. Series acceleration techniques may also be used, for example, to obtain a variety of identities on special functions. Thus, the Euler transform applied to the hypergeometric series gives some of the classic, well-known hypergeometric series identities.

Sequence transformation

In mathematics, a sequence transformation is an operator acting on a given space of sequences (a sequence space). Sequence transformations include linear mappings such as convolution with another sequence, and resummation of a sequence and, more generally, are commonly used for series acceleration, that is, for improving the rate of convergence of a slowly convergent sequence or series. Sequence transformations are also commonly used to compute the antilimit of a divergent series numerically, and are used in conjunction with extrapolation methods.

Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...

Volkan Cevher, Alp Yurtsever, Maria-Luiza Vladarean

We propose a stochastic conditional gradient method (CGM) for minimizing convex finitesum objectives formed as a sum of smooth and non-smooth terms. Existing CGM variants for this template either suffer from slow convergence rates, or require carefully inc ...

2022Volkan Cevher, Ahmet Alacaoglu

In this paper, we analyze the recently proposed stochastic primal-dual hybrid gradient (SPDHG) algorithm and provide new theoretical results. In particular, we prove almost sure convergence of the iterates to a solution with convexity and linear convergenc ...