Automated planning and schedulingAutomated planning and scheduling, sometimes denoted as simply AI planning, is a branch of artificial intelligence that concerns the realization of strategies or action sequences, typically for execution by intelligent agents, autonomous robots and unmanned vehicles. Unlike classical control and classification problems, the solutions are complex and must be discovered and optimized in multidimensional space. Planning is also related to decision theory. In known environments with available models, planning can be done offline.
Sentence (mathematical logic)In mathematical logic, a sentence (or closed formula) of a predicate logic is a Boolean-valued well-formed formula with no free variables. A sentence can be viewed as expressing a proposition, something that must be true or false. The restriction of having no free variables is needed to make sure that sentences can have concrete, fixed truth values: as the free variables of a (general) formula can range over several values, the truth value of such a formula may vary.
Affine logicAffine logic is a substructural logic whose proof theory rejects the structural rule of contraction. It can also be characterized as linear logic with weakening. The name "affine logic" is associated with linear logic, to which it differs by allowing the weakening rule. Jean-Yves Girard introduced the name as part of the geometry of interaction semantics of linear logic, which characterizes linear logic in terms of linear algebra; here he alludes to affine transformations on vector spaces. Affine logic predated linear logic.
NP-intermediateIn computational complexity, problems that are in the complexity class NP but are neither in the class P nor NP-complete are called NP-intermediate, and the class of such problems is called NPI. Ladner's theorem, shown in 1975 by Richard E. Ladner, is a result asserting that, if P ≠ NP, then NPI is not empty; that is, NP contains problems that are neither in P nor NP-complete. Since it is also true that if NPI problems exist, then P ≠ NP, it follows that P = NP if and only if NPI is empty.
Linear logicLinear logic is a substructural logic proposed by Jean-Yves Girard as a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the constructive properties of the latter. Although the logic has also been studied for its own sake, more broadly, ideas from linear logic have been influential in fields such as programming languages, game semantics, and quantum physics (because linear logic can be seen as the logic of quantum information theory), as well as linguistics, particularly because of its emphasis on resource-boundedness, duality, and interaction.
Recursive languageIn mathematics, logic and computer science, a formal language (a set of finite sequences of symbols taken from a fixed alphabet) is called recursive if it is a recursive subset of the set of all possible finite sequences over the alphabet of the language. Equivalently, a formal language is recursive if there exists a Turing machine that, when given a finite sequence of symbols as input, always halts and accepts it if it belongs to the language and halts and rejects it otherwise.
Euler diagramAn Euler diagram (ˈɔɪlər, ) is a diagrammatic means of representing sets and their relationships. They are particularly useful for explaining complex hierarchies and overlapping definitions. They are similar to another set diagramming technique, Venn diagrams. Unlike Venn diagrams, which show all possible relations between different sets, the Euler diagram shows only relevant relationships. The first use of "Eulerian circles" is commonly attributed to Swiss mathematician Leonhard Euler (1707–1783).