Publication

Compressed Sensing For Multi-View Tracking And 3-D Voxel Reconstruction

Volkan Cevher
2008
Conference paper
Abstract

Compressed sensing (CS) suggests that a signal, sparse in some basis, can be recovered from a small number of random projections. In this paper, we apply the CS theory on sparse background-subtracted silhouettes and show the usefulness of such an approach in various multi-view estimation problems. The sparsity of the silhouette images corresponds to sparsity of object parameters (location, volume etc.) in the scene. We use random projections (compressed measurements) of the silhouette images for directly recovering object parameters in the scene coordinates. To keep the computational requirements of this recovery procedure reasonable, we tessellate the scene into a bunch of non-overlapping lines and perform estimation on each of these lines. Our method is scalable in the number of cameras and utilizes very few measurements for transmission among cameras. We illustrate the usefulness of our approach for multi-view tracking and 3-D voxel reconstruction problems.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.