Model-Based Compressive Sensing for Signal Ensembles
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The theme of this thesis revolves around three important manifestations of light, namely its corpuscular, wave and electromagnetic nature. Our goal is to exploit these principles to analyze, design and build imaging modalities by developing new signal proc ...
Sampling has always been at the heart of signal processing providing a bridge between the analogue world and discrete representations of it, as our ability to process data in continuous space is quite limited. Furthermore, sampling plays a key part in unde ...
Shannon's sampling theorem for bandlimited signals, formulated in 1949, has become a cornerstone for modern digital communications and signal processing. The importance of sampling and reconstruction of analog signals has led to great advances in the field ...
The standard approach to compressive sampling considers recovering an unknown deterministic signal with certain known structure, and designing the sub-sampling pattern and recovery algorithm based on the known structure. This approach requires looking for ...
Compressed sensing is provided a data-acquisition paradigm for sparse signals. Remarkably, it has been shown that the practical algorithms provide robust recovery from noisy linear measurements acquired at a near optimal sampling rate. In many real-world a ...
Foundations of signal processing are heavily based on Shannon's sampling theorem for acquisition, representation and reconstruction. This theorem states that signals should not contain frequency components higher than the Nyquist rate, which is half of the ...
In this paper we show that it is sufficient to recover the locations of K strong reflectors within an insonified medium from three receive elements and 2K+1 samples per element. The proposed approach leverages advances in sampling signals with a finite rat ...
In this paper we show that it is sufficient to recover the locations of K strong reflectors within an insonified medium from three receive elements and 2K+1 samples per element. The proposed approach leverages advances in sampling signals with a finite rat ...
While the recent theory of compressed sensing provides an opportunity to overcome the Nyquist limit in recovering sparse signals, a solution approach usually takes the form of an inverse problem of an unknown signal, which is crucially dependent on specifi ...
Sampling moiré effects are well known in signal processing. They occur when a continuous periodic signal g(x) is sampled using a sampling frequency fs that does not respect the Nyquist condition, and the signal frequency f folds-over and gives a new, false ...