Ultraviolet and near-infrared femtosecond temporal pulse shaping with a new high-aspect-ratio one-dimensional micromirror array
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Femtosecond laser pulses used in a regime below the ablation threshold have two noticeable effects on Fused Silica (a-SiO2): they locally increase the material refractive index and modify its HF etching selectivity. The nature of the structural changes ind ...
The anharmonic response of charge-density wave (CDW) order to strong laser-pulse perturbations in 1T-TaS2 and TbTe3 is investigated by means of multiple-pump-pulse time-resolved femtosecond optical spectroscopy. We observe remarkable anharmonic effects hit ...
We are developing a linear array of micromirrors designed for optical, femtosecond laser pulse shaping. It is a bulkmicromachined device, capable of retarding or diminishing certain laser frequencies in order to perform phase and amplitude modulation withi ...
We demonstrate the generation of high-energy sub-2-cycle laser pulses generated through hollow core fibre pulse compression. We demonstrate their full characterization with two independent methods. For all-optical characterization in amplitude and spectral ...
We use femtosecond x-ray diffraction to probe directly the structural dynamics of a charge ordered and orbitally ordered thin film of La0.42Ca0.58MnO3 initiated by an ultrafast optical pulse. At low excitation fluences we observe the displacive excitation ...
We present a novel high power femtosecond infrared laser source, based on a three-stage chirped-pulse amplification scheme. Owing to the high power output of the Ti:sapphire amplifiers, it becomes routinely possible to produce femtosecond infrared laser pu ...
The propagation of high-power femtosecond light pulses in lithium niobate crystals (LiNbO3) is investigated experimentally and theoretically in collinear pump-probe transmission experiments. It is found within a wide intensity range that a strong decrease ...
We show the first results of a linear 100-micromirror array capable of modulating the phase and amplitude of the spectral components of femtosecond lasers. Using MEMS-based reflective systems has the advantage of utilizing coatings tailored to the laser wa ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2010
We have implemented a holographic system to study the propagation of femtosecond laser pulses with high temporal (150 fs) and spatial resolutions (4 μm). The phase information in the holograms allows us to reconstruct both positive and negative index chang ...
Recently, it was demonstrated that femtosecond lasers pulses with energies below the ablation threshold locally enhance the etching rate of fused silica: regions that are exposed to the laser beam are etched faster. This remarkable property has been used f ...