The transposition of P elements in Drosophila melanogaster is regulated by products encoded by the P elements themselves. The P cytotype, which represses transposition and associated phenomena, exhibits both a maternal effect and maternal inheritance. The genetic and molecular mechanisms of this regulation are complex and not yet fully understood. In a previous study, using P-lacZ fusion genes, we have shown that P element regulatory products were able to inhibit the activity of the P promoter in somatic tissues. However, the repression observed did not exhibit the maternal effect characteristic of the P cytotype. With a similar approach, we have assayed in vivo the effect of P element regulatory products in the germline. We show that the P cytotype is able to repress the P promoter in the germline as well as in the soma. Furthermore, this repression exhibits a maternal effect restricted to the germline. On the basis of these new observations, we propose a model for the mechanism of P cytotype repression and its maternal inheritance.
Didier Trono, Evaristo Jose Planet Letschert, Shaoline Sheppard, Christopher James Playfoot
Didier Trono, Evaristo Jose Planet Letschert, Julien Léonard Duc, Alexandre Coudray, Julien Paul André Pontis, Delphine Yvette L Grun, Cyril David Son-Tuyên Pulver, Shaoline Sheppard