Stellar dynamicsStellar dynamics is the branch of astrophysics which describes in a statistical way the collective motions of stars subject to their mutual gravity. The essential difference from celestial mechanics is that the number of body Typical galaxies have upwards of millions of macroscopic gravitating bodies and countless number of neutrinos and perhaps other dark microscopic bodies. Also each star contributes more or less equally to the total gravitational field, whereas in celestial mechanics the pull of a massive body dominates any satellite orbits.
Dwarf galaxy problemThe dwarf galaxy problem, also known as the missing satellites problem, arises from a mismatch between observed dwarf galaxy numbers and collisionless numerical cosmological simulations that predict the evolution of the distribution of matter in the universe. In simulations, dark matter clusters hierarchically, in ever increasing numbers of halo "blobs" as halos' components' sizes become smaller-and-smaller.
Stellar atmosphereThe stellar atmosphere is the outer region of the volume of a star, lying above the stellar core, radiation zone and convection zone. The stellar atmosphere is divided into several regions of distinct character: The photosphere, which is the atmosphere's lowest and coolest layer, is normally its only visible part. Light escaping from the surface of the star stems from this region and passes through the higher layers. The Sun's photosphere has a temperature in the range.
Thick diskThe thick disk is one of the structural components of about 2/3 of all disk galaxies, including the Milky Way. It was discovered first in external edge-on galaxies. Soon after, it was proposed as a distinct galactic structure in the Milky Way, different from the thin disk and the halo in the 1983 article by Gilmore & Reid. It is supposed to dominate the stellar number density between above the galactic plane and, in the solar neighborhood, is composed almost exclusively of older stars.
Dwarf starA dwarf star is a star of relatively small size and low luminosity. Most main sequence stars are dwarf stars. The meaning of the word "dwarf" was later extended to some star-sized objects that are not stars, and compact stellar remnants that are no longer stars. The term was originally coined in 1906 when the Danish astronomer Ejnar Hertzsprung noticed that the reddest stars – classified as K and M in the Harvard scheme – could be divided into two distinct groups. They are either much brighter than the Sun, or much fainter.
CoronagraphA coronagraph is a telescopic attachment designed to block out the direct light from a star or other bright object so that nearby objects – which otherwise would be hidden in the object's bright glare – can be resolved. Most coronagraphs are intended to view the corona of the Sun, but a new class of conceptually similar instruments (called stellar coronagraphs to distinguish them from solar coronagraphs) are being used to find extrasolar planets and circumstellar disks around nearby stars as well as host galaxies in quasars and other similar objects with active galactic nuclei (AGN).
AntliaAntlia (ˈæntliə; from Ancient Greek ἀντλία) is a constellation in the Southern Celestial Hemisphere. Its name means "pump" in Latin and Greek; it represents an air pump. Originally Antlia Pneumatica, the constellation was established by Nicolas-Louis de Lacaille in the 18th century. Its non-specific (single-word) name, already in limited use, was preferred by John Herschel then welcomed by the astronomic community which officially accepted this.
22° haloA 22° halo is an atmospheric optical phenomenon that consists of a halo with an apparent radius of approximately 22° around the Sun or Moon. When visible around the Moon, it is also known as a moon ring, storm ring, or winter halo. It forms as sunlight or moonlight is refracted by millions of hexagonal ice crystals suspended in the atmosphere. Its radius is roughly the length of an outstretched hand at arm's length. Even though it is one of the most common types of halo, the exact shape and orientation of the ice crystals responsible for the 22° halo are the topic of debate.
Iron peakThe iron peak is a local maximum in the vicinity of Fe (Cr, Mn, Fe, Co and Ni) on the graph of the abundances of the chemical elements. For elements lighter than iron on the periodic table, nuclear fusion releases energy. For iron, and for all of the heavier elements, nuclear fusion consumes energy. Chemical elements up to the iron peak are produced in ordinary stellar nucleosynthesis, with the alpha elements being particularly abundant. Some heavier elements are produced by less efficient processes such as the r-process and s-process.
FornaxFornax (ˈfɔrnæks) is a constellation in the southern celestial hemisphere, partly ringed by the celestial river Eridanus. Its name is Latin for furnace. It was named by French astronomer Nicolas Louis de Lacaille in 1756. Fornax is one of the 88 modern constellations. The three brightest stars—Alpha, Beta and Nu Fornacis—form a flattened triangle facing south. With an apparent magnitude of 3.91, Alpha Fornacis is the brightest star in Fornax. Six star systems have been found to have exoplanets.