Summary
A coronagraph is a telescopic attachment designed to block out the direct light from a star or other bright object so that nearby objects – which otherwise would be hidden in the object's bright glare – can be resolved. Most coronagraphs are intended to view the corona of the Sun, but a new class of conceptually similar instruments (called stellar coronagraphs to distinguish them from solar coronagraphs) are being used to find extrasolar planets and circumstellar disks around nearby stars as well as host galaxies in quasars and other similar objects with active galactic nuclei (AGN). The coronagraph was introduced in 1931 by the French astronomer Bernard Lyot; since then, coronagraphs have been used at many solar observatories. Coronagraphs operating within Earth's atmosphere suffer from scattered light in the sky itself, due primarily to Rayleigh scattering of sunlight in the upper atmosphere. At view angles close to the Sun, the sky is much brighter than the background corona even at high altitude sites on clear, dry days. Ground-based coronagraphs, such as the High Altitude Observatory's Mark IV Coronagraph on top of Mauna Loa, use polarization to distinguish sky brightness from the image of the corona: both coronal light and sky brightness are scattered sunlight and have similar spectral properties, but the coronal light is Thomson-scattered at nearly a right angle and therefore undergoes scattering polarization, while the superimposed light from the sky near the Sun is scattered at only a glancing angle and hence remains nearly unpolarized. Coronagraph instruments are extreme examples of stray light rejection and precise photometry because the total brightness from the solar corona is less than one-millionth the brightness of the Sun. The apparent surface brightness is even fainter because, in addition to delivering less total light, the corona has a much greater apparent size than the Sun itself. During a total solar eclipse, the Moon acts as an occluding disk and any camera in the eclipse path may be operated as a coronagraph until the eclipse is over.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.