Publication

Photoactivatable and photoconvertible fluorescent probes for protein labeling

Abstract

Photosensitive probes are powerful tools to study cellular processes with high temporal and spatial resolution. However, most synthetic fluorophores suited for biomolecular imaging have not been converted yet to appropriate photosensitive analogues. Here we describe a generally applicable strategy for the generation of photoactivatable and photoconvertible fluorescent probes that can be selectively coupled to SNAP-tag fusion proteins in living cells. Photoactivatable versions of fluorescein and Cy3 as well as a photoconvertible Cy5-Cy3 probe were prepared and coupled to selected proteins on the cell surface, in the cytosol, and in the nucleus of cells. In proof-of-principle experiments, the photoactivatable Cy3 probe was used to characterize the mobility of a lipid-anchored cell surface protein and of a G protein coupled receptor (GPCR). This work establishes a generally applicable strategy for the generation of a large variety of different photosensitive fluorophores with tailor-made properties for biomolecular imaging.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.