Membrane proteins are common proteins that are part of, or interact with, biological membranes. Membrane proteins fall into several broad categories depending on their location. Integral membrane proteins are a permanent part of a cell membrane and can either penetrate the membrane (transmembrane) or associate with one or the other side of a membrane (integral monotopic). Peripheral membrane proteins are transiently associated with the cell membrane. Membrane proteins are common, and medically important—about a third of all human proteins are membrane proteins, and these are targets for more than half of all drugs. Nonetheless, compared to other classes of proteins, determining membrane protein structures remains a challenge in large part due to the difficulty in establishing experimental conditions that can preserve the correct conformation of the protein in isolation from its native environment. Membrane proteins perform a variety of functions vital to the survival of organisms: Membrane receptor proteins relay signals between the cell's internal and external environments. Transport proteins move molecules and ions across the membrane. They can be categorized according to the Transporter Classification database. Membrane enzymes may have many activities, such as oxidoreductase, transferase or hydrolase. Cell adhesion molecules allow cells to identify each other and interact. For example, proteins involved in immune response The localization of proteins in membranes can be predicted reliably using hydrophobicity analyses of protein sequences, i.e. the localization of hydrophobic amino acid sequences. Integral membrane protein and Transmembrane protein Integral membrane proteins are permanently attached to the membrane. Such proteins can be separated from the biological membranes only using detergents, nonpolar solvents, or sometimes denaturing agents. They can be classified according to their relationship with the bilayer: Integral polytopic proteins are transmembrane proteins that span across the membrane more than once.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
BIO-640: Practical - Van der Goot Lab
Membrane organization. Investigate the compartmentalisation of biological membranes: what are the determinants of the localization of transmembrane proteins in the 2 dimensional space of the membranes
CH-411: Cellular signalling
Presentation of selected signalling pathways with emphasis on both the mechanism of action of the molecules involved, molecular interactions and the role of their spatio-temporal organization within t
BIO-692: Symmetry and Conservation in the Cell
This course shows students how the physical principles of conservation, symmetry, and locality influence the dynamics of living organisms at the molecular and cellular level. Computer simulations are
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.