Microscopic traffic flow modelMicroscopic traffic flow models are a class of scientific models of vehicular traffic dynamics. In contrast, to macroscopic models, microscopic traffic flow models simulate single vehicle-driver units, so the dynamic variables of the models represent microscopic properties like the position and velocity of single vehicles. Also known as time-continuous models, all car-following models have in common that they are defined by ordinary differential equations describing the complete dynamics of the vehicles' positions and velocities .
Johnson–Nyquist noiseJohnson–Nyquist noise (thermal noise, Johnson noise, or Nyquist noise) is the electronic noise generated by the thermal agitation of the charge carriers (usually the electrons) inside an electrical conductor at equilibrium, which happens regardless of any applied voltage. Thermal noise is present in all electrical circuits, and in sensitive electronic equipment (such as radio receivers) can drown out weak signals, and can be the limiting factor on sensitivity of electrical measuring instruments.
Road debrisRoad debris, a form of road hazard, is debris on or off a road. Road debris includes substances, materials, and objects that are foreign to the normal roadway environment. Debris may be produced by vehicular or non-vehicular sources, but in all cases it is considered litter, a form of solid waste. Debris may tend to collect in areas where vehicles do not drive, such as on the edges (shoulder), around traffic islands, and junctions. Road spray or tire kickup is road debris (usually liquid water) that has been kicked up, pushed out, or sprayed out from a tire.
White noiseIn signal processing, white noise is a random signal having equal intensity at different frequencies, giving it a constant power spectral density. The term is used, with this or similar meanings, in many scientific and technical disciplines, including physics, acoustical engineering, telecommunications, and statistical forecasting. White noise refers to a statistical model for signals and signal sources, rather than to any specific signal.
Bus priority signalBus priority or transit signal priority (TSP) is a name for various techniques to improve service and reduce delay for mass transit vehicles at intersections (or junctions) controlled by traffic signals. TSP techniques are most commonly associated with buses, but can also be used along tram/streetcar or light rail lines, especially those that mix with or conflict with general vehicular traffic. Transit signal priority techniques can generally be classified as "active" or "passive".
Noise-induced hearing lossNoise-induced hearing loss (NIHL) is a hearing impairment resulting from exposure to loud sound. People may have a loss of perception of a narrow range of frequencies or impaired perception of sound including sensitivity to sound or ringing in the ears. When exposure to hazards such as noise occur at work and is associated with hearing loss, it is referred to as occupational hearing loss. Hearing may deteriorate gradually from chronic and repeated noise exposure (such as to loud music or background noise) or suddenly from exposure to impulse noise, which is a short high intensity noise (such as a gunshot or airhorn).
Underwater acousticsUnderwater acoustics or hydroacoustics is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries. The water may be in the ocean, a lake, a river or a tank. Typical frequencies associated with underwater acoustics are between 10 Hz and 1 MHz. The propagation of sound in the ocean at frequencies lower than 10 Hz is usually not possible without penetrating deep into the seabed, whereas frequencies above 1 MHz are rarely used because they are absorbed very quickly.
Speed of soundThe speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At , the speed of sound in air is about , or one kilometre in or one mile in . It depends strongly on temperature as well as the medium through which a sound wave is propagating. At , the speed of sound in air is about . More simply, the speed of sound is how fast vibrations travel. The speed of sound in an ideal gas depends only on its temperature and composition.