CiliopathyA ciliopathy is any genetic disorder that affects the cellular cilia or the cilia anchoring structures, the basal bodies, or ciliary function. Primary cilia are important in guiding the process of development, so abnormal ciliary function while an embryo is developing can lead to a set of malformations that can occur regardless of the particular genetic problem. The similarity of the clinical features of these developmental disorders means that they form a recognizable cluster of syndromes, loosely attributed to abnormal ciliary function and hence called ciliopathies.
Eddy (fluid dynamics)In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. The moving fluid creates a space devoid of downstream-flowing fluid on the downstream side of the object. Fluid behind the obstacle flows into the void creating a swirl of fluid on each edge of the obstacle, followed by a short reverse flow of fluid behind the obstacle flowing upstream, toward the back of the obstacle. This phenomenon is naturally observed behind large emergent rocks in swift-flowing rivers.
Simple shearSimple shear is a deformation in which parallel planes in a material remain parallel and maintain a constant distance, while translating relative to each other. In fluid mechanics, simple shear is a special case of deformation where only one component of velocity vectors has a non-zero value: And the gradient of velocity is constant and perpendicular to the velocity itself: where is the shear rate and: The displacement gradient tensor Γ for this deformation has only one nonzero term: Simple shear with the rate is the combination of pure shear strain with the rate of 1/2 and rotation with the rate of 1/2: The mathematical model representing simple shear is a shear mapping restricted to the physical limits.
Darboux frameIn the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non-umbilic point of a surface embedded in Euclidean space. It is named after French mathematician Jean Gaston Darboux. Let S be an oriented surface in three-dimensional Euclidean space E3. The construction of Darboux frames on S first considers frames moving along a curve in S, and then specializes when the curves move in the direction of the principal curvatures.