Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Fluorescence super-resolution microscopy has allowed unprecedented insight into the workings of biological systems below the diffraction limit of light. Over the past decade, it has overcome several challenges to deliver 3D, multi-color and faster imaging ...
Phase imaging is widely used in biomedical imaging, sensing, and material characterization, among other fields. However, direct imaging of phase objects with subwavelength resolution remains a challenge. Here, we demonstrate subwavelength imaging of phase ...
Springernature2024
Imaging live cells in their native environment is crucial for the understanding of complex biological phenomena. Modern optical microscopy methods such as fluorescence super-resolution microscopy are increasingly combined with complementary, label-free tec ...
Well-established imaging techniques proved that features below the diffraction limit can be observed optically using so-called super-resolution microscopies, which overcome Abbe's resolution limit. In traditional far-field microscopy, the introduction of f ...
Microscopy is of high interest for biology since it allows imaging features that are too small to
be seen with naked eyes. However, cells are mostly transparent to visible and infrared light
which makes it difficult to see with a traditional microscope. To ...
EPFL2018
Scanning Near-field Optical Microscopy (SNOM) technique enables to overcome Abbe diffraction limit of far-field optics as well as to obtain simultaneously optical and topographical images. While the optical resolution of the method is limited by the apertu ...
Super-resolution microscopies based on the localization of single molecules have been widely adopted due to their demonstrated performance and their accessibility resulting from open software and simple hardware. The PAINT method for localization microscop ...
Dielectric nanoresona tors uniquely support both magnetic and electric resonances across a wide wavelength range. They are thus being exploited in a growing number of groundbreaking applications. In particular, they have been recently suggested as promisin ...
Super-resolution fluorescence microscopy is widespread, owing to its demonstrated ability to resolve dynamical processes within cells and to identify the structure and position of specific proteins in the interior of protein complexes. Nowadays, subcellula ...
Overcoming the classical diffraction limit in optical microscopy is known to be achievable by a variety of far-field and near-field microscopy techniques. More recently, so-called micro-object-based optical super-resolution microscopy techniques have emerg ...