Publication

Positive feedbacks contribute to the robustness of the cell cycle with respect to molecular noise

Marc Hafner
2010
Journal paper
Abstract

Most cellular oscillators rely on interlocked positive and negative regulatory feedback loops. While a negative circuit is necessary and sufficient to have limit-cycle oscillations, the role of positive feedbacks is not clear. Here we investigate the possible role of positive feedbacks in the robustness of the oscillations in presence of molecular noise. We performed stochastic simulations of a minimal 3-variable model of the cell cycle. We compare the robustness of the oscillations in the 3-variable model and in a modified model which incorporates a positive feedback loop through an auto-catalytic activation. We find that the model with a positive feedback loop is more robust to molecular noise than the model without the positive feedback loop. This increase of robustness is parameter-independent and can be explained by the attractivity properties of the limit-cycle. © 2010 Springer-Verlag Berlin Heidelberg.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.