Partitioning graphs into complete and empty graphs
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Recently, Pawlik et al. have shown that triangle-free intersection graphs of line segments in the plane can have arbitrarily large chromatic number. Specifically, they construct triangle-free segment intersection graphs with chromatic number Θ(log log n). ...
The split-coloring problem is a generalized vertex coloring problem where we partition the vertices into a minimum number of split graphs. In this paper, we study some notions which are extensively studied for the usual vertex coloring and the cocoloring p ...
Starting from the basic problem of reconstructing a 2-dimensional image given by its projections on two axes, one associates a model of edge coloring in a complete bipartite graph. The complexity of the case with k=3 colors is open. Variations and special ...
Flip-graph connectedness is established here for the vertex set of the 4-dimensional cube. It is found as a consequence, that this vertex set admits 92487256 triangulations, partitioned into 247451 symmetry classes. ...
The intersection graph of a collection C of sets is the graph on the vertex set C, in which C-1 . C-2 is an element of C are joined by an edge if and only if C-1 boolean AND C-2 not equal empty set. Erdos conjectured that the chromatic number of triangle-f ...
In threshold graphs one may find weights for the vertices and a threshold value t such that for any subset S of vertices, the sum of the weights is at most the threshold t if and only if the set S is a stable (independent) set. In this note we ask a simila ...
Given a set P of n points in ℝd, let d1 > d2 >...denote all distinct inter-point distances generated by point pairs in P. It was shown by Schur, Martini, Perles, and Kupitz that there is at most oned-dimensional regular simplex of edge length d1 whos ...
The minimum clique partition (MCP) problem is that of partitioning the vertex set of a given graph into a minimum number of cliques. Given n points in the plane, the corresponding unit disk graph (UDG) has these points as vertices, and edges connecting poi ...
Extensions and variations of the basic problem of graph coloring are introduced. The problem consists essentially in finding in a graph G a k-coloring, i.e., a partition V-1,...,V-k of the vertex set of G such that, for some specified neighborhood (N) over ...
Several classical constructions illustrate the fact that the chromatic number of a graph may be arbitrarily large compared to its clique number. However, until very recently no such construction was known for intersection graphs of geometric objects in the ...