Chemical vapor depositionChemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (substrate) is exposed to one or more volatile precursors, which react and/or decompose on the substrate surface to produce the desired deposit. Frequently, volatile by-products are also produced, which are removed by gas flow through the reaction chamber.
Carbonate mineralCarbonate minerals are those minerals containing the carbonate ion, CO32-. Calcite group: trigonal Calcite CaCO3 Gaspéite (Ni,Mg,Fe2+)CO3 Magnesite MgCO3 Otavite CdCO3 Rhodochrosite MnCO3 Siderite FeCO3 Smithsonite ZnCO3 Spherocobaltite CoCO3 Aragonite group: orthorhombic Aragonite CaCO3 Cerussite PbCO3 Strontianite SrCO3 Witherite BaCO3 Rutherfordine UO2CO3 Natrite Na2CO3 Dolomite group: trigonal Ankerite CaFe(CO3)2 Dolomite CaMg(CO3)2 Huntite Mg3Ca(CO3)4 Minrecordite CaZn(CO3)2 Barytocalcite BaCa(CO3)2 Carbonate with hydroxide: monoclinic Azurite Cu3(CO3)2(OH)2 Hydrocerussite Pb3(CO3)2(OH)2 Malachite Cu2CO3(OH)2 Rosasite (Cu,Zn)2CO3(OH)2 Phosgenite Pb2(CO3)Cl2 Hydrozincite Zn5(CO3)2(OH)6 Aurichalcite (Zn,Cu)5(CO3)2(OH)6 Hydromagnesite Mg5(CO3)4(OH)2.
Coordination polymerA coordination polymer is an inorganic or organometallic polymer structure containing metal cation centers linked by ligands. More formally a coordination polymer is a coordination compound with repeating coordination entities extending in 1, 2, or 3 dimensions. It can also be described as a polymer whose repeat units are coordination complexes.
Sputter depositionSputter deposition is a physical vapor deposition (PVD) method of thin film deposition by the phenomenon of sputtering. This involves ejecting material from a "target" that is a source onto a "substrate" such as a silicon wafer. Resputtering is re-emission of the deposited material during the deposition process by ion or atom bombardment. Sputtered atoms ejected from the target have a wide energy distribution, typically up to tens of eV (100,000 K).
TemperatureTemperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on various reference points and thermometric substances for definition. The most common scales are the Celsius scale with the unit symbol °C (formerly called centigrade), the Fahrenheit scale (°F), and the Kelvin scale (K), the latter being used predominantly for scientific purposes.
Scanning tunneling microscopeA scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986. STM senses the surface by using an extremely sharp conducting tip that can distinguish features smaller than 0.1 nm with a 0.01 nm (10 pm) depth resolution. This means that individual atoms can routinely be imaged and manipulated.
Transmission electron microscopyTransmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device.
Reducing agentIn chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are common reducing agents include the alkali metals, formic acid, oxalic acid, and sulfite compounds. In their pre-reaction states, reducers have extra electrons (that is, they are by themselves reduced) and oxidizers lack electrons (that is, they are by themselves oxidized). This is commonly expressed in terms of their oxidation states.
Magnesium carbonateMagnesium carbonate, (archaic name magnesia alba), is an inorganic salt that is a colourless or white solid. Several hydrated and basic forms of magnesium carbonate also exist as minerals. The most common magnesium carbonate forms are the anhydrous salt called magnesite (), and the di, tri, and pentahydrates known as barringtonite (), nesquehonite (), and lansfordite (), respectively. Some basic forms such as artinite (), hydromagnesite (), and dypingite () also occur as minerals. All of those minerals are colourless or white.
Scanning probe microscopyScanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. SPM was founded in 1981, with the invention of the scanning tunneling microscope, an instrument for imaging surfaces at the atomic level. The first successful scanning tunneling microscope experiment was done by Gerd Binnig and Heinrich Rohrer. The key to their success was using a feedback loop to regulate gap distance between the sample and the probe.