Incremental Global Parameter Estimation in Dynamical Systems
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this thesis we study stability from several viewpoints. After covering the practical importance, the rich history and the ever-growing list of manifestations of stability, we study the following. (i) (Statistical identification of stable dynamical syste ...
The accurate representation of the structural and dynamical properties of water is essential for simulating the unique behavior of this ubiquitous solvent. Here we assess the current status of describing liquid water using ab initio molecular dynamics, wit ...
In this article, we propose a dynamical system to avoid obstacles which are star shaped and simultaneously converge to a goal. The convergence is almost-global in a domain and the stationary points are identified explicitly. Our approach is based on the id ...
In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...
Electrochemical Impedance Spectroscopy (EIS) and Equivalent Circuit Models (ECMs) are widely used to characterize the impedance and estimate parameters of electrochemical systems such as batteries. We use a generic ECM with ten parameters grouped to model ...
We study the problem of performance optimization of closed -loop control systems with unmodeled dynamics. Bayesian optimization (BO) has been demonstrated to be effective for improving closed -loop performance by automatically tuning controller gains or re ...
Accurate extraction of heart rate from photoplethysmography (PPG) signals remains challenging due to motion artifacts and signal degradation. Although deep learning methods trained as a data-driven inference problem offer promising solutions, they often un ...
Sample efficiency is a fundamental challenge in de novo molecular design. Ideally, molecular generative models should learn to satisfy a desired objective under minimal calls to oracles (computational property predictors). This problem becomes more apparen ...
Dynamical flow networks serve as macroscopic models for, e.g., transportation networks, queuing networks, and distribution networks. While the flow dynamics in such networks follow the conservation of mass on the links, the outflow from each link is often ...
Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...