Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Red blood cell (RBC) membrane fluctuations provide important insights into cell states. We present a spatial analysis of red blood cell membrane fluctuations by using digital holographic Microscopy (DHM). This interferometric and dye-free technique, possessing nanometric axial and microsecond temporal sensitivities enables to measure cell membrane fluctuations (CMF) on the whole cell surface. DHM acquisition is combined with a model which allows extracting the membrane fluctuation amplitude, while taking into account cell membrane topology. Uneven distribution of CMF amplitudes over the RBC surface is observed, showing maximal values in a ring corresponding to the highest points on the RBC torus as well as in some scattered areas in the inner region of the RBC. CMF amplitudes of 35.9 +/- 8.9 nm and 4.7 +/- 0.5 nm (averaged over the cell surface) were determined for normal and ethanol-fixed RBCs, respectively. (C) 2009 Elsevier Inc. All rights reserved.
Gerardo Turcatti, David Crettaz, Michel Prudent, Manon Sandra Bardyn
Gerardo Turcatti, Benjamin Rappaz, David Crettaz, Michel Prudent, Manon Sandra Bardyn