Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The Monge problem [23], [27], as reformulated by Kantorovich [19], [20] is that of the transportation, at a minimum "cost", of a given mass distribu- tion from an initial to a final position during a given time interval. It is an optimal transport problem ...
The equations of motion are derived for the dynamical folding of charged molecular strands (such as DNA) modeled as flexible continuous filamentary distributions of interacting rigid charge conformations. The new feature is that these equations are nonloca ...
We formulate Euler-Poincare and Lagrange-Poincare equations for systems with broken symmetry. We specialize the general theory to present explicit equations of motion for nematic systems, ranging from single nematic molecules to biaxial liquid crystals. Th ...
Motivated by the problem of longitudinal data assimilation, e.g., in the registration of a sequence of images, we develop the higher-order framework for Lagrangian and Hamiltonian reduction by symmetry in geometric mechanics. In particular, we obtain the r ...
The goal of this short presentation is to introduce Geometric Mechanics as well as Asynchronous Variational Integrators (AVI). The geometric point of view in mechanics combined with solid analysis has been a phenomenal success in linking various diverse ar ...
The Hamiltonian structures of several hybrid kinetic-fluid models are identified explicitly, upon considering collisionless Vlasov dynamics for the hot particles interacting with a bulk fluid. After presenting different pressure-coupling schemes for an ord ...
The Monge problem (Monge 1781; Taton 1951), as reformulated by Kantorovich (2006a, 2006b) is that of the transportation at a minimum "cost" of a given mass distribution from an initial to a final position during a given time interval. It is an optimal tran ...
The subject of this thesis lies in the intersection of differential geometry and functional analysis, a domain usually called global analysis. A central object in this work is the group Ds(M) of all orientation preserving diffeomorphisms of a compact manif ...
We obtain a theory of stratified Sternberg spaces thereby extending the theory of cotangent bundle reduction for free actions to the singular case where the action on the base manifold consists of only one orbit type. We find that the symplectic reduced sp ...
Every action on a Poisson manifold by Poisson diffeomorphisms lifts to a Hamiltonian action on its symplectic groupoid which has a canonically defined momentum map. We study various properties of this momentum map as well as its use in reduction. ...