Stabilized finite element schemes for incompressible flow using Scott-Vogelius elements
Related publications (51)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Swirl jets in crosflow are investigated experimentally and numerically. The main difference with non-swirl cases is an asymmetry of the dominant kidney vortex and a slight distortion of the jet trace downstream of the injection hole. Jet rotation, at relat ...
An adaptive multiresolution scheme is proposed for the numerical solution of a spatially two-dimensional model of sedimentation of suspensions of small solid particles dispersed in a viscous fluid. This model consists in a version of the Stokes equations f ...
This study derives geometric, variational discretization of continuum theories arising in fluid dynamics, magnetohydrodynamics (MHD), and the dynamics of complex fluids. A central role in these discretizations is played by the geometric formulation of flui ...
This investigation examines experimentally the behavior of swirled jets produced by axial flow fans blowing into a crossflow at low velocity ratios. The main difference with non-swirl cases is an asymmetry of the dominant kidney vortex and a slight distort ...
In this paper, we discuss the application of IsoGeometric Analysis to incompressible viscous flow problems. We consider, as a prototype problem, the Stokes system and we propose various choices of compatible spline spaces for the approximations to the velo ...
Velocity fields in rectangular shallow reservoirs with different length-to-width and expansion ratios were investigated in an experimental study, to evaluate the effect of geometry on the flow field. A wide range of combinations of these two non-dimensiona ...
We formulate Euler-Poincare and Lagrange-Poincare equations for systems with broken symmetry. We specialize the general theory to present explicit equations of motion for nematic systems, ranging from single nematic molecules to biaxial liquid crystals. Th ...
In this thesis we address the numerical approximation of the incompressible Navier-Stokes equations evolving in a moving domain with the spectral element method and high order time integrators. First, we present the spectral element method and the basic to ...
In fluid mechanics, turbulence can occur in very simple flow geometries, for Newtonian fluids and without the need for additional flow conditions such as temperature gradients or chemical reactions. In standard cases, intuitive assumptions on the physics o ...
It is known that, when the immersed boundary method (IBM) is implemented within spectral-like methods, the Gibbs oscillation seriously deteriorates the calculation of derivatives near the body surface. In this paper, a radial basis function (RBF) based smo ...