Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This paper is concerned with an investigation of electron transfer between cytochrome P450scc (CYP11A1) immobilized on nanostructured rhodium-graphite electrodes. Multi-walled carbon nanotubes (MWCNT) were deposited onto the rhodium-graphite electrodes by drop casting. Cytochrome P450scc was deposited onto MWCNT-modified rhodium-graphite electrodes. Cytochrome P450scc was also deposited onto both gold nanoparticle-modified and bare rhodium-graphite electrodes, in order to have a comparison with our previous works in this field. Cyclic voltammetry indicated largest enhanced activity of the enzyme at the MWCNT-modified surface. The role of the nanotubes in mediating electron transfer to the cytochrome P450scc was verified as further improved with respect to the case of rhodium-graphite electrodes modified by the use of gold nanoparticles. The sensitivity of our system in cholesterol sensing is higher by orders of magnitude with respect to other similar systems very recently published that are based on cholesterol oxidase and esterase. The electron transfer improvement attained by the use of MWCNT in P450-based cholesterol biosensors was demonstrated to be larger than 2.4 times with respect to the use of gold nanoparticles and 17.8 times larger with respect to the case of simple bare electrodes. The sensitivity was equal to 1.12 mu A/(mM mm(2)) and the linearity of the biosensor response was improved with respect to the use of gold nanoparticles. (C) 2008 Elsevier B.V. All rights reserved.
Ardemis Anoush Boghossian, Melania Reggente, Mohammed Mouhib, Hanxuan Wang, Charlotte Elisabeth Marie Roullier, Fabian Fischer, Patricia Brandl
Ardemis Anoush Boghossian, Giulia Tagliabue, Sayyed Hashem Sajjadi, Alessandra Antonucci, Shang-Jung Wu, Theodoros Tsoulos, Amirmostafa Amirjani