Recurrence relationIn mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation. If the values of the first numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In linear recurrences, the nth term is equated to a linear function of the previous terms.
Fixed-point subringIn algebra, the fixed-point subring of an automorphism f of a ring R is the subring of the fixed points of f, that is, More generally, if G is a group acting on R, then the subring of R is called the fixed subring or, more traditionally, the ring of invariants under G. If S is a set of automorphisms of R, the elements of R that are fixed by the elements of S form the ring of invariants under the group generated by S. In particular, the fixed-point subring of an automorphism f is the ring of invariants of the cyclic group generated by f.
Minimal polynomial (linear algebra)In linear algebra, the minimal polynomial μA of an n × n matrix A over a field F is the monic polynomial P over F of least degree such that P(A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of μA. The following three statements are equivalent: λ is a root of μA, λ is a root of the characteristic polynomial χA of A, λ is an eigenvalue of matrix A. The multiplicity of a root λ of μA is the largest power m such that ker((A − λIn)m) strictly contains ker((A − λIn)m−1).
Boolean satisfiability problemIn logic and computer science, the Boolean satisfiability problem (sometimes called propositional satisfiability problem and abbreviated SATISFIABILITY, SAT or B-SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. In other words, it asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE. If this is the case, the formula is called satisfiable.
Gaussian eliminationIn mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855).
Wolfram LanguageThe Wolfram Language (ˈwʊlfrəm ) is a proprietary, general high-level multi-paradigm programming language developed by Wolfram Research. It emphasizes symbolic computation, functional programming, and rule-based programming and can employ arbitrary structures and data. It is the programming language of the mathematical symbolic computation program Mathematica. The Wolfram Language was a part of the initial version of Mathematica in 1988. Symbolic aspects of the engine make it a computer algebra system.
For loopIn computer science a for-loop or for loop is a control flow statement for specifying iteration. Specifically, a for loop functions by running a section of code repeatedly until a certain condition has been satisfied. For-loops have two parts: a header and a body. The header defines the iteration and the body is the code that is executed once per iteration. The header often declares an explicit loop counter or loop variable. This allows the body to know which iteration is being executed.
Algebraic equationIn mathematics, an algebraic equation or polynomial equation is an equation of the form where P is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term algebraic equation refers only to univariate equations, that is polynomial equations that involve only one variable. On the other hand, a polynomial equation may involve several variables. In the case of several variables (the multivariate case), the term polynomial equation is usually preferred to algebraic equation.
NP (complexity)In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine. NP is the set of decision problems solvable in polynomial time by a nondeterministic Turing machine.
Core (group theory)In group theory, a branch of mathematics, a core is any of certain special normal subgroups of a group. The two most common types are the normal core of a subgroup and the p-core of a group. For a group G, the normal core or normal interior of a subgroup H is the largest normal subgroup of G that is contained in H (or equivalently, the intersection of the conjugates of H). More generally, the core of H with respect to a subset S ⊆ G is the intersection of the conjugates of H under S, i.e.