Publication

"Plug and Play" single photons at 1.3 mu m approaching gigahertz operation

Blandine Alloing
2008
Journal paper
Abstract

We report a "plug and play" single photon source, fully integrated with an optical fiber, emitting at 1.3 mu m. Micropillars were patterned on a single layer InAs quantum dot wafer to guarantee a single pillar per fiber core. The single exciton peak filtered with a tunable optical filter was fed to a Hanbury Brown and Twiss interferometer, and the second order correlation function at zero delay was less than 0.5, indicating single photon emission. The measured decay dynamics under double-pulse excitation show that the single photon device can be operated at speeds greater than 0.5 GHz. (C) 2008 American Institute of Physics.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Optical fiber
An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data transfer rates) than electrical cables.
Single-mode optical fiber
In fiber-optic communication, a single-mode optical fiber (SMF), also known as fundamental- or mono-mode, is an optical fiber designed to carry only a single mode of light - the transverse mode. Modes are the possible solutions of the Helmholtz equation for waves, which is obtained by combining Maxwell's equations and the boundary conditions. These modes define the way the wave travels through space, i.e. how the wave is distributed in space. Waves can have the same mode but have different frequencies.
Multi-mode optical fiber
Multi-mode optical fiber is a type of optical fiber mostly used for communication over short distances, such as within a building or on a campus. Multi-mode links can be used for data rates up to 100 Gbit/s. Multi-mode fiber has a fairly large core diameter that enables multiple light modes to be propagated and limits the maximum length of a transmission link because of modal dispersion. The standard G.651.1 defines the most widely used forms of multi-mode optical fiber.
Show more
Related publications (62)

PET REBINNING WITH REGULARIZED DENSITY SPLINES

Michaël Unser

PET reconstruction algorithms have long relied on sinogram rebinning. However, as detectors grow smaller in a recent wave of cutting-edge scanners, individual sensors no longer accrue hundreds of photons. Instead, most detect a single photon or none at all ...
New York2023

Functionalization of polymer optical fibers for medical application

Jialuo Luo

The increasing challenges caused by the growing and aging population and the fast pace of life are calling for a change of our current medical care system towards being rapid, easy, and on-demand self-care. Empowerment with the self-caring components such ...
EPFL2022

Tunable wavelength-stabilized mode-locked thulium-doped fiber laser beyond 2000nm

Camille Sophie Brès, Moritz Bartnick, Gayathri Bharathan

We demonstrate operation of a tunable mode-locked thulium-doped fiber laser, based on a wavelength-selective chirped fiber Bragg grating (CFBG). By applying strain to the CFBG, we shift its reflection band and can thereby tune the emission-wavelength of th ...
SPIE-INT SOC OPTICAL ENGINEERING2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.