Sequence spaceIn functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers to the field K of real or complex numbers. The set of all such functions is naturally identified with the set of all possible infinite sequences with elements in K, and can be turned into a vector space under the operations of pointwise addition of functions and pointwise scalar multiplication.
SequenceIn mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position.
Lovász conjectureIn graph theory, the Lovász conjecture (1969) is a classical problem on Hamiltonian paths in graphs. It says: Every finite connected vertex-transitive graph contains a Hamiltonian path. Originally László Lovász stated the problem in the opposite way, but this version became standard. In 1996, László Babai published a conjecture sharply contradicting this conjecture, but both conjectures remain widely open. It is not even known if a single counterexample would necessarily lead to a series of counterexamples.
G-parityIn particle physics, G-parity is a multiplicative quantum number that results from the generalization of C-parity to multiplets of particles. C-parity applies only to neutral systems; in the pion triplet, only π0 has C-parity. On the other hand, strong interaction does not see electrical charge, so it cannot distinguish amongst π+, π0 and π−. We can generalize the C-parity so it applies to all charge states of a given multiplet: where ηG = ±1 are the eigenvalues of G-parity.
Barrelled spaceIn functional analysis and related areas of mathematics, a barrelled space (also written barreled space) is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by .
Binary-coded decimalIn computing and electronic systems, binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits, usually four or eight. Sometimes, special bit patterns are used for a sign or other indications (e.g. error or overflow). In byte-oriented systems (i.e. most modern computers), the term unpacked BCD usually implies a full byte for each digit (often including a sign), whereas packed BCD typically encodes two digits within a single byte by taking advantage of the fact that four bits are enough to represent the range 0 to 9.
Combinatorial proofIn mathematics, the term combinatorial proof is often used to mean either of two types of mathematical proof: A proof by double counting. A combinatorial identity is proven by counting the number of elements of some carefully chosen set in two different ways to obtain the different expressions in the identity. Since those expressions count the same objects, they must be equal to each other and thus the identity is established. A bijective proof. Two sets are shown to have the same number of members by exhibiting a bijection, i.
Combinatorial principlesIn proving results in combinatorics several useful combinatorial rules or combinatorial principles are commonly recognized and used. The rule of sum, rule of product, and inclusion–exclusion principle are often used for enumerative purposes. Bijective proofs are utilized to demonstrate that two sets have the same number of elements. The pigeonhole principle often ascertains the existence of something or is used to determine the minimum or maximum number of something in a discrete context.