Direct product of groupsIn mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H. This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics. In the context of abelian groups, the direct product is sometimes referred to as the direct sum, and is denoted .
Matrix additionIn mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. For a vector, , adding two matrices would have the geometric effect of applying each matrix transformation separately onto , then adding the transformed vectors. However, there are other operations that could also be considered addition for matrices, such as the direct sum and the Kronecker sum. Two matrices must have an equal number of rows and columns to be added.
Mapping class groupIn mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space. Consider a topological space, that is, a space with some notion of closeness between points in the space. We can consider the set of homeomorphisms from the space into itself, that is, continuous maps with continuous inverses: functions which stretch and deform the space continuously without breaking or gluing the space.
Floer homologyIn mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold.
SymplectomorphismIn mathematics, a symplectomorphism or symplectic map is an isomorphism in the of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volume-preserving and preserves the symplectic structure of phase space, and is called a canonical transformation. A diffeomorphism between two symplectic manifolds is called a symplectomorphism if where is the pullback of . The symplectic diffeomorphisms from to are a (pseudo-)group, called the symplectomorphism group (see below).
Smooth morphismIn algebraic geometry, a morphism between schemes is said to be smooth if (i) it is locally of finite presentation (ii) it is flat, and (iii) for every geometric point the fiber is regular. (iii) means that each geometric fiber of f is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If S is the spectrum of an algebraically closed field and f is of finite type, then one recovers the definition of a nonsingular variety.
Deformation (mathematics)In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces.
Group action (sociology)In sociology, a group action is a situation in which a number of agents take action simultaneously in order to achieve a common goal; their actions are usually coordinated. Group action will often take place when social agents realize they are more likely to achieve their goal when acting together rather than individually. Group action differs from group behaviours, which are uncoordinated, and also from mass actions, which are more limited in place.
Social actionIn sociology, social action, also known as Weberian social action, is an act which takes into account the actions and reactions of individuals (or 'agents'). According to Max Weber, "Action is 'social' insofar as its subjective meaning takes account of the behavior of others and is thereby oriented in its course." The basic concept was primarily developed in the non-positivist theory of Max Weber to observe how human behaviors relate to cause and effect in the social realm.