In mathematics, a symplectomorphism or symplectic map is an isomorphism in the of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volume-preserving and preserves the symplectic structure of phase space, and is called a canonical transformation.
A diffeomorphism between two symplectic manifolds is called a symplectomorphism if
where is the pullback of . The symplectic diffeomorphisms from to are a (pseudo-)group, called the symplectomorphism group (see below).
The infinitesimal version of symplectomorphisms gives the symplectic vector fields. A vector field is called symplectic if
Also, is symplectic iff the flow of is a symplectomorphism for every .
These vector fields build a Lie subalgebra of .
Here, is the set of smooth vector fields on , and is the Lie derivative along the vector field
Examples of symplectomorphisms include the canonical transformations of classical mechanics and theoretical physics, the flow associated to any Hamiltonian function, the map on cotangent bundles induced by any diffeomorphism of manifolds, and the coadjoint action of an element of a Lie group on a coadjoint orbit.
Any smooth function on a symplectic manifold gives rise, by definition, to a Hamiltonian vector field and the set of all such vector fields form a subalgebra of the Lie algebra of symplectic vector fields. The integration of the flow of a symplectic vector field is a symplectomorphism. Since symplectomorphisms preserve the symplectic 2-form and hence the symplectic volume form, Liouville's theorem in Hamiltonian mechanics follows. Symplectomorphisms that arise from Hamiltonian vector fields are known as Hamiltonian symplectomorphisms.
Since {H, H} = XH(H) = 0, the flow of a Hamiltonian vector field also preserves H. In physics this is interpreted as the law of conservation of energy.
If the first Betti number of a connected symplectic manifold is zero, symplectic and Hamiltonian vector fields coincide, so the notions of Hamiltonian isotopy and symplectic isotopy of symplectomorphisms coincide.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold. The term "symplectic", introduced by Weyl, is a calque of "complex"; previously, the "symplectic group" had been called the "line complex group".
In mathematics and classical mechanics, canonical coordinates are sets of coordinates on phase space which can be used to describe a physical system at any given point in time. Canonical coordinates are used in the Hamiltonian formulation of classical mechanics. A closely related concept also appears in quantum mechanics; see the Stone–von Neumann theorem and canonical commutation relations for details.
Explores the Hamiltonian formalism for the harmonic oscillator, focusing on deriving Lagrangian and Hamiltonian, isolating the system, and generating new conserved quantities.
Explores practical applications in nonlinear dynamics, emphasizing symplectic integration methods and thin lens approximations for accurate computations in accelerator physics.
Covers concepts of entropy, Gaussian distributions, and channel capacity with constraints.
Deep learning has achieved remarkable success in various challenging tasks such as generating images from natural language or engaging in lengthy conversations with humans.The success in practice stems from the ability to successfully train massive neural ...
We study the symplectic Howe duality using two new and independent combinatorial methods: via determinantal formulae on the one hand, and via (bi)crystals on the other hand. The first approach allows us to establish a generalised version where weight multi ...
This paper describes CosmoGattice, a modern package for lattice simulations of the dynamics of interacting scalar and gauge fields in an expanding universe. CosmoGattice incorporates a series of features that makes it very versatile and powerful: i) it is ...