Neural correlates of consciousnessThe neural correlates of consciousness (NCC) refer to the relationships between mental states and neural states and constitute the minimal set of neuronal events and mechanisms sufficient for a specific conscious percept. Neuroscientists use empirical approaches to discover neural correlates of subjective phenomena; that is, neural changes which necessarily and regularly correlate with a specific experience.
Feedforward neural networkA feedforward neural network (FNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers. Its flow is uni-directional, meaning that the information in the model flows in only one direction—forward—from the input nodes, through the hidden nodes (if any) and to the output nodes, without any cycles or loops, in contrast to recurrent neural networks, which have a bi-directional flow.
Binomial proportion confidence intervalIn statistics, a binomial proportion confidence interval is a confidence interval for the probability of success calculated from the outcome of a series of success–failure experiments (Bernoulli trials). In other words, a binomial proportion confidence interval is an interval estimate of a success probability p when only the number of experiments n and the number of successes nS are known. There are several formulas for a binomial confidence interval, but all of them rely on the assumption of a binomial distribution.
Inverse-chi-squared distributionIn probability and statistics, the inverse-chi-squared distribution (or inverted-chi-square distribution) is a continuous probability distribution of a positive-valued random variable. It is closely related to the chi-squared distribution. It arises in Bayesian inference, where it can be used as the prior and posterior distribution for an unknown variance of the normal distribution. The inverse-chi-squared distribution (or inverted-chi-square distribution ) is the probability distribution of a random variable whose multiplicative inverse (reciprocal) has a chi-squared distribution.
Estimation statisticsEstimation statistics, or simply estimation, is a data analysis framework that uses a combination of effect sizes, confidence intervals, precision planning, and meta-analysis to plan experiments, analyze data and interpret results. It complements hypothesis testing approaches such as null hypothesis significance testing (NHST), by going beyond the question is an effect present or not, and provides information about how large an effect is. Estimation statistics is sometimes referred to as the new statistics.
Rule of successionIn probability theory, the rule of succession is a formula introduced in the 18th century by Pierre-Simon Laplace in the course of treating the sunrise problem. The formula is still used, particularly to estimate underlying probabilities when there are few observations or events that have not been observed to occur at all in (finite) sample data. If we repeat an experiment that we know can result in a success or failure, n times independently, and get s successes, and n − s failures, then what is the probability that the next repetition will succeed? More abstractly: If X1, .
Additive smoothingIn statistics, additive smoothing, also called Laplace smoothing or Lidstone smoothing, is a technique used to smooth categorical data. Given a set of observation counts from a -dimensional multinomial distribution with trials, a "smoothed" version of the counts gives the estimator: where the smoothed count and the "pseudocount" α > 0 is a smoothing parameter. α = 0 corresponds to no smoothing. (This parameter is explained in below.
Systems neuroscienceSystems neuroscience is a subdiscipline of neuroscience and systems biology that studies the structure and function of neural circuits and systems. Systems neuroscience encompasses a number of areas of study concerned with how nerve cells behave when connected together to form neural pathways, neural circuits, and larger brain networks. At this level of analysis, neuroscientists study how different neural circuits analyze sensory information, form perceptions of the external world, make decisions, and execute movements.