Fast Forward Selection to Speed Up Sparse Gaussian Process Regression
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...
This paper addresses the problem of efficiently achieving visual predictive control tasks. To this end, a memory of motion, containing a set of trajectories built off-line, is used for leveraging precomputation and dealing with difficult visual tasks. Stan ...
Recent advances in statistical learning and convex optimization have inspired many successful practices. Standard theories assume smoothness---bounded gradient, Hessian, etc.---and strong convexity of the loss function. Unfortunately, such conditions may ...
We consider the problem of learning a target function corresponding to a deep, extensive-width, non-linear neural network with random Gaussian weights. We consider the asymptotic limit where the number of samples, the input dimension and the network width ...
Theoretical and computational approaches to the study of materials and molecules have, over the last few decades, progressed at an exponential rate. Yet, the possibility of producing numerical predictions that are on par with experimental measurements is t ...
Additive models form a widely popular class of regression models which represent the relation between covariates and response variables as the sum of low-dimensional transfer functions. Besides flexibility and accuracy, a key benefit of these models is the ...
Institute of Electrical and Electronics Engineers2017
Although our work lies in the field of random processes, this thesis was originally motivated by signal processing applications, mainly the stochastic modeling of sparse signals. We develop a mathematical study of the innovation model, under which a signal ...
Generalized additive models (GAMs) are regression models wherein parameters of probability distributions depend on input variables through a sum of smooth functions, whose degrees of smoothness are selected by L-2 regularization. Such models have become th ...
A major challenge in the common approach of hot water generation in residential houses lies in the highly stochastic nature of domestic hot water (DHW) demand. Learning hot water use behavior enables water heating systems to continuously adapt to the stoch ...
The application of Bayesian modeling techniques is increasingly common in neuroscience due to the coherent and principled way in which the paradigm deals with uncertainty. The Bayesian framework is particularly valuable in the context of complex, ill-posed ...