**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Trace coordinates of Teichmüller space of Riemann surfaces of signature $(0,4)$

Abstract

Summary: We explicitly give $calT$, the Teichmüller space of four-holed spheres (which we call $X$ pieces) in trace coordinates, as well as its modular group and a fundamental domain for the action of this group on $calT$ which is its moduli space. As a consequence, we see that on any hyperbolic Riemann surface, two closed geodesics of lengths smaller than $2operatornamearccosh(2)$ intersect at most once; two closed geodesics of lengths smaller than $2operatornamearccosh(3)$ are both non-dividing or intersect at most once.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (2)

Related concepts (10)

Riemann surface

In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together.

Moduli space

In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth algebraic curves of a fixed genus) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space.

Modular group

In mathematics, the modular group is the projective special linear group of 2 × 2 matrices with integer coefficients and determinant 1. The matrices A and −A are identified. The modular group acts on the upper-half of the complex plane by fractional linear transformations, and the name "modular group" comes from the relation to moduli spaces and not from modular arithmetic. The modular group Γ is the group of linear fractional transformations of the upper half of the complex plane, which have the form where a, b, c, d are integers, and ad − bc = 1.

Using an algebraic formalism based on matrices in SL(2,R), we explicitly give the Teichmüller spaces of Riemann surfaces of signature (0,4) (X pieces), (1,2) ("Fish" pieces) and (2,0) in trace coordinates. The approach, based upon gluing together two building blocks (Q and Y pieces), is then extended to tree-like pants decomposition for higher signatures (g,n) and limit cases such as surfaces with cusps or cone-like singularities. Given the Teichmüller spaces, we establish a set of generators of their modular groups for signatures (0,4), (1,2) and (2,0) in trace coordinates using transformations acting separately on the building blocks and an algorithm on dividing geodesics. The fact that these generators act particularly nice in trace coordinates gives further motivation to this choice (rather then the one of Fenchel-Nielsen coordinates). This allows us to solve the Riemann moduli problem for X pieces, "Fish" pieces and surfaces of genus 2; i.e. to give the moduli spaces as the fundamental domains for the action of the modular groups on the Teichmüller spaces. In this context, we also give an algorithm deciding whether two Riemann surfaces of signatures (0,4), (1,2) or (2,0) given by points in the Teichmüller space are isometric or not. As a consequence, we show the following two results concerning simple closed geodesics: On any purely hyperbolic Riemann surface (containing neither cusps nor cone-like singularities), the longest of two simple closed geodesics that intersect one another n times is of length at least ln, a sharp constant independent of the surface. We explicitly give ln for n = 1,2,3 and study its behaviour when n goes to infinity. X pieces are spectrally rigid with respect to the length spectrum of simple closed geodesics.

The goal of this document is to provide a generalmethod for the computational approach to the topology and geometry of compact Riemann surfaces. The approach is inspired by the paradigms of object oriented programming. Our methods allow us in particular to model, for numerical and computational purposes, a compact Riemann surface given by Fenchel-Nielsen parameters with respect to an arbitrary underlying graph, this in a uniformand robust manner. With this programming model established we proceed by proposing an algorithmthat produces explicit compact fundamental domains of compact Riemann surfaces as well as generators of the corresponding Fuchsian groups. In particular, we shall explain how onemay obtain convex geodesic canonical fundamental polygons. In a second part we explain in what manner simple closed geodesics are represented in our model. This will lead us to an algorithm that enumerates all these geodesics up to a given prescribed length. Finally, we shall briefly overview a number of possible applications of our method, such as finding the systoles of a Riemann surface, or drawing its Birman-Series set in a fundamental domain.