Publication

Adaptive Sleep-Wake Discrimination for Wearable Devices

Dario Floreano, Walter Karlen
2010
Journal paper
Abstract

Sleep/wake classification systems that rely on phys- iological signals suffer from inter-subject differences that make accurate classification with a single, subject-independent model difficult. To overcome the limitations of inter-subject variability we suggest a novel on-line adaptation technique that updates the sleep/wake classifier in real-time. The objective of the present study was to evaluate the performance of a newly developed adaptive classification algorithm that was embedded on a wearable sleep/wake classification system called SleePic. The algorithm processed electrocardiogram and respiratory effort signals for the classification task and applied behavioral mea- surements (obtained from accelerometer and press-button data) for the automatic adaptation task. When trained as a subject- independent classifier algorithm, the SleePic device was only able to correctly classify 74.94% ± 6.76 of the human rated sleep/wake data. By using the suggested automatic adaptation method the mean classification accuracy could be significantly improved to 92.98% ± 3.19. A subject-independent classifier based on activity data only showed a comparable accuracy of 90.44% ± 3.57. We demonstrated that subject-independent models used for on- line sleep and wake classification can successfully be adapted to previously unseen subjects without the intervention of human experts or off-line calibration.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.