Summary
Circadian rhythm sleep disorders (CRSD), also known as circadian rhythm sleep-wake disorders (CRSWD), are a family of sleep disorders which affect the timing of sleep. CRSDs arise from a persistent pattern of sleep/wake disturbances that can be caused either by dysfunction in one's biological clock system, or by misalignment between one's endogenous oscillator and externally imposed cues. As a result of this mismatch, those affected by circadian rhythm sleep disorders have a tendency to fall asleep at unconventional time points in the day. These occurrences often lead to recurring instances of disturbed rest, where individuals affected by the disorder are unable to go to sleep and awaken at "normal" times for work, school, and other social obligations. Delayed sleep phase disorder, advanced sleep phase disorder, non-24-hour sleep–wake disorder and irregular sleep–wake rhythm disorder represents the four main types of CRSD. Humans, like most living organisms, have various biological rhythms. These biological clocks control processes that fluctuate daily (e.g., body temperature, alertness, hormone secretion), generating circadian rhythms. Among these physiological characteristics, the sleep-wake propensity can also be considered one of the daily rhythms regulated by the biological clock system. Human's sleeping cycles are tightly regulated by a series of circadian processes working in tandem, allowing for the experience of moments of consolidated sleep during the night and a long wakeful moment during the day. Conversely, disruptions to these processes and the communication pathways between them can lead to problems in sleeping patterns, which are collectively referred to as circadian rhythm sleep disorders. A circadian rhythm is an entrainable, endogenous, biological activity that has a period of roughly twenty-four hours. This internal time-keeping mechanism is centralized in the suprachiasmatic nucleus (SCN) of humans, and allows for the internal physiological mechanisms underlying sleep and alertness to become synchronized to external environmental cues, like the light-dark cycle.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
HUM-203(a): History of contemporary Asia A
Le cours propose une introduction à l'histoire contemporaine du Japon et de la Chine: la réussite du processus de modernisation au Japon, puis le développement du militarisme, conduisent à une confron
ENV-444: Exploratory data analysis in environmental health
This course teaches how to apply exploratory spatial data analysis to health data. Teaching focuses on the basics of spatial statistics and of epidemiology, and proposes a context to analyse geodatase
BIO-478: Pharmacology and pharmacokinetics
This course introduces the student to the fudamentals of pharmacology, pharmacokinetics and drug-receptor interactions. It discusses also pharmacogenetics and chronopharmacology, to exemplify the chal
Show more
Related publications (223)

Mice with humanized livers reveal the role of hepatocyte clocks in rhythmic behavior

Cédric Gobet, Sylviane Métairon, Frédéric Bruno Martin Gachon, Benjamin Dieter Weger

The synchronization of circadian clock depends on a central pacemaker located in the suprachiasmatic nuclei. However, the potential feedback of peripheral signals on the central clock remains poorly characterized. To explore whether peripheral organ circad ...
AMER ASSOC ADVANCEMENT SCIENCE2023

Statistical physics of periodic biological processes

Lorenzo Talamanca

Earth rotation around its axis imposes a 24-hour rhythmicity to all life on the planet.Rather than passively responding to these periodic changes, nature has given us an internal timekeeper, the circadian clock, to anticipate to our advantage the fluctuati ...
EPFL2023

Uncovering personalized glucose responses and circadian rhythms from multiple wearable biosensors with Bayesian dynamical modeling

Felix Naef, Nicholas Edward Phillips

Wearable biosensors and smartphone applications can measure physiological variables over multiple days in free-living conditions. We measure food and drink ingestion, glucose dynamics, physical activity, heart rate (HR), and heart rate variability (HRV) in ...
CELL PRESS2023
Show more