Information Processing and Structure of Dynamical Networks
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In the domains of machine learning, data science and signal processing, graph or network data, is becoming increasingly popular. It represents a large portion of the data in computer, transportation systems, energy networks, social, biological, and other s ...
Since their beginnings in the 1830s and 1840s, news agencies have played an important role in the national and international news market, aiming to deliver news as fast and as reliable as possible. While we know that newspapers have been using agency conte ...
The integrations of advanced metering infrastructure and smart meters make it possible to detect electricity thieves by analyzing electricity consumption readings. However, the detection accuracies of traditional models are limited due to their difficulty ...
Finding cycles in directed graphs enables important applications in various domains such as finance, biology, chemistry, and network science. However, as the size of graph datasets continues to grow, it becomes increasingly difficult to discover cycles wit ...
Cycles are one of the fundamental subgraph patterns and being able to enumerate them in graphs enables important applications in a wide variety of fields, including finance, biology, chemistry, and network science. However, to enable cycle enumeration in r ...
This paper considers the problem of resilient distributed optimization and stochastic learning in a server-based architecture. The system comprises a server and multiple agents, where each agent has its own local cost function. The agents collaborate with ...
In several machine learning settings, the data of interest are well described by graphs. Examples include data pertaining to transportation networks or social networks. Further, biological data, such as proteins or molecules, lend themselves well to graph- ...
Satellite remote sensing has become a key technology for monitoring Earth and the processes occurring at its surface. It relies on state-of-the-art machine learning models that require large annotated datasets to capture the extreme diversity of the proble ...
In the last decade, deep neural networks have achieved tremendous success in many fields of machine learning.However, they are shown vulnerable against adversarial attacks: well-designed, yet imperceptible, perturbations can make the state-of-the-art deep ...
An adaptive network consists of multiple communicating agents, equipped with sensing and learning abilities that allow them to extract meaningful information from measurements. The objective of the network is to solve a global inference problem in a decent ...