**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Graph Representation Learning with Optimal Transport: Analysis and Applications

Abstract

In several machine learning settings, the data of interest are well described by graphs. Examples include data pertaining to transportation networks or social networks. Further, biological data, such as proteins or molecules, lend themselves well to graph-structured descriptions. In such settings, it is desirable to design representation learning algorithms that can take into account the information captured by the underlying structure. This thesis focuses on providing new methods to ingrain geometrical information in end-to-end deep learning architectures for graphs through the use of elements from Optimal Transport theory.First, we consider the setting where the data can be described by a fixed graph. In this setting, each datapoint corresponds to a node of the graph and the edges among nodes signify their pairwise relations. We propose an autoencoder architecture that consists of a linear layer in the encoder and a novel Wasserstein barycentric layer at the decoder. Our proposed barycentric layer takes into account the underlying geometry through the diffusion distance of the graph and provides a way to obtain structure-aware, non-linear interpolations, which lead to directly interpretable node embeddings that are stable to perturbations of the graph structure. Further, the embeddings obtained with our proposed autoencoder achieve competitive or superior results compared to state-of-the-art methods in node classification tasks.Second, we consider the setting where the data consist of multiple graphs. In that setting, the graphs can be of varying size and, therefore, a global pooling operation is needed in order to obtain representations of fixed size and enable end-to-end learning with deep networks. We propose a global pooling operation that optimally preserves the statistical properties of the representations. In order to do so, we take into account the geometry of the representation space and introduce a global pooling layer that minimizes the Wasserstein distance between a graph representation and its pooled counterpart, of fixed size. This is achieved by performing a Wasserstein gradient flow with respect to the pooled representation. Our proposed method demonstrates promising results in the task of graph classification.Overall, in this thesis we provide new methods for incorporating geometrical information in end-to-end deep learning architectures for graph structured data. We believe that our proposals will contribute to the development of algorithms that learn meaningful representations and that take fully into account the geometry of the data under consideration.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (109)

Related concepts (36)

Related MOOCs (23)

Graph theory

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points) which are connected by edges (also called links or lines). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.

Graph (abstract data type)

In computer science, a graph is an abstract data type that is meant to implement the undirected graph and directed graph concepts from the field of graph theory within mathematics. A graph data structure consists of a finite (and possibly mutable) set of vertices (also called nodes or points), together with a set of unordered pairs of these vertices for an undirected graph or a set of ordered pairs for a directed graph. These pairs are known as edges (also called links or lines), and for a directed graph are also known as edges but also sometimes arrows or arcs.

Feature learning

In machine learning, feature learning or representation learning is a set of techniques that allows a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task. Feature learning is motivated by the fact that machine learning tasks such as classification often require input that is mathematically and computationally convenient to process.

Analyse I

Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond

Analyse I (partie 1) : Prélude, notions de base, les nombres réels

Concepts de base de l'analyse réelle et introduction aux nombres réels.

Analyse I (partie 2) : Introduction aux nombres complexes

Introduction aux nombres complexes

Pierre Vandergheynst, Felix Naef, Cédric Gobet, Francesco Craighero, Mohan Vamsi Nallapareddy

Translation elongation plays an important role in regulating protein concentrations in the cell, and dysregulation of this process has been linked to several human diseases. In this study, we use data from ribo-seq experiments to model ribosome dwell times ...

2024Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...

This article proposes an exploration technique for multiagent reinforcement learning (MARL) with graph-based communication among agents. We assume that the individual rewards received by the agents are independent of the actions by the other agents, while ...