A radiative transfer model for an idealized and non-scattering atmosphere and its application for ground-based remote sensing of the troposphere
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider the problem of locating point sources in the planar domain from overdetermined boundary measurements of solutions of Poisson's equation. In this paper, we propose a novel technique, termed "analytic sensing," which combines the application of G ...
The grazing function g is introduced—a synchrobetatron optical quantity that is analogous (and closely connected) to the Twiss and dispersion functions β, α, η, and η′. It parametrizes the rate of change of total angle with respect to synchrotron amplitude ...
In this study, we present a radiative-transfer model to simulate reflectance and transmittance of light by soil slabs. The radiative-transfer model implemented, referred to as the beam-tracing model, uses cross-sectional images of scattering media to descr ...
The mathematical formulation of the continuum approach to radiative transfer modeling in two-phase semi-transparent media is numerically validated by comparing radiative fluxes computed by (i) direct, discrete-scale and (ii) continuum-scale approaches. The ...
Motivated by the observation that the diurnal evolution of sensible and latent heat fluxes tends to maintain a constant Bowen ratio, we derive approximate solutions of the ordinary differential equations of a simplified atmospheric boundary-layer (ABL) mod ...
The EPFL water vapor and temperature scanning solar blind Raman lidar is a research tool developed for atmospheric boundary layer studies. The lidar has raw spatial and temporal resolutions of 1.25 meters and 1 second respectively and offers a new vision o ...
Water vapor plays an important role in weather, global climate processes and atmospheric chemistry. It is the most significant greenhouse gas and affects the planet's radiative and non-radiative energy balance. The distribution of water vapor in the atmosp ...
In this study, we determine the scalar roughness for sensible heat in the temperature profile (z0,h) based on direct skin temperature measurements and profiles of wind and temperature in a complex urban environment. Classically, skin temperatures are infer ...
During a haze event in Baltimore, U.S.A. from July 6 to 8, 2002, smoke from forest fires in the Québec region (Canada), degraded air quality and impacted upon local climate, decreasing solar radiation and air temperature. The smoke particles in and above t ...
In this study, the scalar roughness for sensible heat in the temperature profile (z0,h) is determined based on direct skin temperature measurements and profiles of wind and temperature in a complex urban environment. Typically, skin temperatures are inferr ...