Publication

The heat of formation of the nitric oxide dimer and its UV spectrum

Hubert van den Bergh
1978
Journal paper
Abstract

The nitric oxide monomer-dimer equil. was monitored at 273-364 K. The enthalpy change for the reaction 2 NO -> (NO)2, calcd. from the temp. dependence of the UV absorption intensity, and the heat of formation at 316 K are -1.07 +- 0.07 and 42.09 +- 0.11 kcal/mol. resp.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (18)
Ultraviolet–visible spectroscopy
UV spectroscopy or UV–visible spectrophotometry (UV–Vis or UV/Vis) refers to absorption spectroscopy or reflectance spectroscopy in part of the ultraviolet and the full, adjacent visible regions of the electromagnetic spectrum. Being relatively inexpensive and easily implemented, this methodology is widely used in diverse applied and fundamental applications. The only requirement is that the sample absorb in the UV-Vis region, i.e. be a chromophore. Absorption spectroscopy is complementary to fluorescence spectroscopy.
Absorption spectroscopy
Absorption spectroscopy refers to spectroscopic techniques that measure the absorption of electromagnetic radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating field. The intensity of the absorption varies as a function of frequency, and this variation is the absorption spectrum. Absorption spectroscopy is performed across the electromagnetic spectrum.
Laser absorption spectrometry
Laser absorption spectrometry (LAS) refers to techniques that use lasers to assess the concentration or amount of a species in gas phase by absorption spectrometry (AS). Optical spectroscopic techniques in general, and laser-based techniques in particular, have a great potential for detection and monitoring of constituents in gas phase. They combine a number of important properties, e.g. a high sensitivity and a high selectivity with non-intrusive and remote sensing capabilities.
Show more
Related publications (32)

Engineering Absorption for Foil Applications

Sebastian Mader

Light matter interactions such as extinction, reflection, and transmission can be described by classical optics. Dur-ing the past decades, research focused on a novel resonant extinction type called plasmonics that allows for en-hancement of both types of ...
EPFL2022

Radical-free hyperpolarized MRI using endogenously occurring pyruvate analogues and UV-induced nonpersistent radicals

Rolf Gruetter, Andrea Capozzi, Josefina Adriana Maria Bastiaansen, Hikari Ananda Infinity Yoshihara, Alice Radaelli, Claudia Christina Zanella, Lionel Pierre Arn

It was recently demonstrated that nonpersistent radicals can be generated in frozen solutions of metabolites such as pyruvate by irradiation with UV light, enabling radical-free dissolution dynamic nuclear polarization. Although pyruvate is endogenous, the ...
WILEY2021

Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum

Tobias Kippenberg, Camille Sophie Brès, Davide Grassani, Hairun Guo, Clemens Herkommer, Eirini Tagkoudi

Directly accessing the middle infrared, the molecular functional group spectral region, via supercontinuum generation processes based on turn-key fiber lasers offers the undeniable advantage of simplicity and robustness. Recently, the assessment of the coh ...
2019
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.