Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We introduce a new method for computerized real-time evaluation of femoroacetabular impingement (FM). In contrast to previously presented stress analyses, this method is based on two types of predictions of penetration depths for two rotating bodies: curvilinear and radial penetration depth. This intuitive method allows the analysis of both bony and soft tissue structures (such as cartilage and acetabular labrum) in real time. Characteristic penetration depth patterns were found for different subtypes of FM, such as cam and pincer pathologies. In addition, correlation between the penetration depths (estimated by applying this method) and the existing contact stresses (estimated by applying the finite element method) of various hip morphologies were found. A strong correlation with predicted stress values existed, with a mean correlation coefficient of 0.91 for the curvilinear and 0.80 for the radial penetration method. The results show that the penetration depth method is a promising, fast, and accurate method for quantification and diagnosis of FM. (C) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:880-886, 2010
Marilyne Andersen, Sabine Süsstrunk, Caroline Karmann, Bahar Aydemir, Kynthia Chamilothori, Seungryong Kim